Indirect Taxes in Multisectoral Macroeconomic Models

A Contribution from the Inforum group

Maurizio Grassini

Università di Firenze Italy

(Some) Matrices behind a Macroeconomic Multisectoral Model

Supply and Use matrices
Domestic and imported flows
Symmetric Input-output matrices
Margin matrix
Excise Tax Matrix
ad valorem tax flows (EU VAT Matrix)
Bridge Matrices (Consumption, Investments)

Tax Flows in IO tables

Let us consider intermediate flows in terms of :

q the real flow *p* the corresponding price *s* the amount of excise tax *t* the rate of the *ad valorem* tax

INTERMEDIATE FLOWS AT BASIC PRICES

Let us consider an intermediate consumption element X_{ii} at basic prices

$$X_{ij} = q_{ij} * p_i$$

where:

 q_{ij} is the input *i* in sector *j* in real' term p_i is the basic price of input *i*

INTERMEDIATE FLOWS AT BASIC PRICES PLUS EXCISE TAX

Now we have

$$X_{ij} = q_{ij} * p_i + s_{ij}$$

where:

 s_{ij} is the amount of excise tax on q_{ij}

The *ad valorem* Tax and Excise tax in the intermediate consumption flows

Now, the intermediate consumption flow is

$$X_{ij} = q_{ij} * p_i * (1 + t_{ij}) + s_{ij}$$

or
$$X_{ij} = (q_{ij} * p_i + s_{ij}) * (1 + t_{ij})$$

where:

 t_{ij} is the ad valorem tax rate related to $q_{ij} p_i^*$

Peeling off the IO table

Reshaping the IO table thorough the removal of excise and ad valorem taxes

Excise tax flows in IO matrix

 CI_2 CI_1 CI_3 FD Q $q_{13}p_1 + s_{13} = c_1p_1 + s^1 = q_1p_1 + s_{11} + s_{12} + s_{13} + s^1$ $|q_{11}p_1 + s_{11} - q_{12}p_1 + s_{12}|$ $q_{23}p_2 + s_{23} - c_2p_2 + s^2$ $q_2p_2 + s_{21} + s_{22} + s_{23} + s^2$ $q_{22}p_{21} + s_{22}$ $q_{21}p_2 + s_{21}$ $q_{33}p_3 + s_{33} = c_3p_3 + s_3^3 = q_3p_3 + s_{31} + s_{32} + s_{33} + s_3^3$ $q_{31}p_3 + s_{31} - q_{32}p_3 + s_{32}$ VA_1 VA_2 VA_3 $q_1 p_1$ $q_{2}p_{2}$ q_3p_3 II_2 II_1 II_3 qq_2 qq_1 qq_3

II_i excise tax row sum of sector i

qq_i column sum of sector i

$$H_{i} = s_{i1} + s_{i2} + s_{i3} + s'$$

 $\overline{qq_i} = \overline{q_ip_i} + \overline{H_i}$

IO table after the removal of the excise flows

CI_1	CI_2	CI_3	FD	Q
$q_{11}p_1$	$q_{12}p_{1}$	$q_{13}p_{1}$	$c_{1}p_{1}$	$q_{1}p_{1}$
$q_{21}p_{2}$	$q_{_{22}}p_{_{21}}$	$q_{23}p_{2}$	$c_{2}p_{2}$	$q_{2}p_{2}$
$q_{31}p_{3}$	$q_{32}p_{3}$	$q_{33}p_{3}$	$c_{3}p_{3}$	$q_{3}p_{3}$
VA_1	VA_2	VA_3		
IA_1	IA_2	IA_3	$I\!A^c$	
$q_{1}p_{1}$	$q_{2}p_{2}$	$q_{3}p_{3}$		

The removal of excise tax flows makes room for the excise tax row in the Value Added zone

Where

$$IA_i = s_{1i} + s_{2i} + s_{13}$$

and

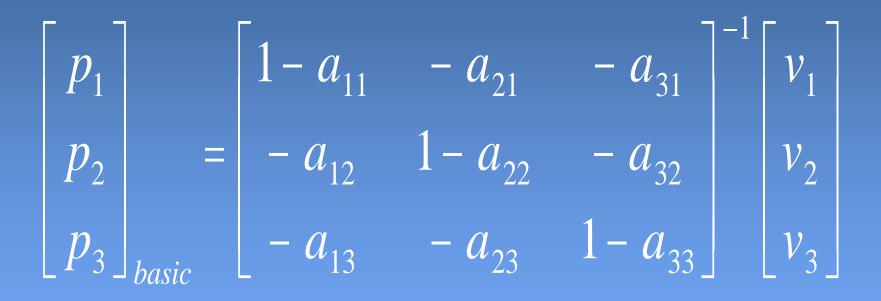
$$IA^c = s^1 + s^2 + s^3$$

the excise tax on final demand components <u>not</u> <u>necessarily recorded</u> in IO tables

Ad valorem tax flows in IO matrix

CI_1	CI_2	CI_3	FD	Q
$q_{11}p_{1}$	$q_{12}p_1$	$q_{13}p_{1}$	$c_1 p_1 (1 + t_1)$	$q_1p_1 + VATRS_1$
$q_{21}p_{2}$	$q_{22}p_{21}$	$q_{23}p_2(1+t_2)$	$c_2 p_2 (1 + t_2)$	$q_2 p_2 + VATRS_2$
$q_{31}p_{3}$	$q_{32}p_3(1+t_3)$	$q_{33}p_3(1+t_3)$	$c_3 p_3 (1 + t_3)$	$q_3p_3 + VATRS_3$
VA_1	VA_2	VA ₃		
$q_1 p_1$	$q_2 p_2$	$q_{3}p_{3}$		
VATRS ₁	VATRS ₂	VATRS ₃		
TOT_1	TOT_2	TOT_3		

Where VATRS stands for VAT Row Sum


 $VATRS_{1} = c_{1}p_{1}t_{1}$ $VATRS_{2} = c_{2}p_{2}t_{2} + q_{23}p_{2}t_{2}$ $VATRS_{3} = c_{3}p_{3}t_{3} + q_{32}p_{3}t_{3} + q_{33}p_{3}t_{3}$

 $VAT_{1} = 0$ $VAT_{2} = q_{32}p_{3}t_{3}$ $VAT_{3} = q_{23}p_{2}t_{2} + q_{33}p_{3}t_{3}$ $VAT^{c} = c_{1}p_{1}t_{1} + c_{2}p_{2}t_{2} + c_{3}p_{3}t_{3}$

IO table when VAT flows are removed

CI_1	CI_2	CI_3	FD	Q
$q_{11}p_{1}$	$q_{12}p_{1}$	$q_{13}p_{1}$	$c_1 p_1$	$q_1 p_1$
$q_{21}p_{2}$	$q_{22}p_{21}$	$q_{23}p_{2}$	$c_{2}p_{2}$	$q_{2}p_{2}$
$q_{31}p_{3}$	$q_{32}p_{3}$	$q_{33}p_{3}$	$c_{3}p_{3}$	$q_{3}p_{3}$
VA_1	VA_2	VA_3		
VAT_1	VAT_2	VAT_3	VAT^{c}	
$q_{1}p_{1}$	$q_{2}p_{2}$	$q_{3}p_{3}$		

Basic prices from the Leontief's price equation

Price equation with excise tax (rates)

 $a_{11}p_{1} + a_{21}p_{2} + a_{31}p_{3} + a_{11}\alpha_{1} + a_{21}\alpha_{2} + a_{31}\alpha_{3} + v_{1} = p_{1}$ $a_{12}p_{1} + a_{22}p_{2} + a_{32}p_{3} + a_{12}\alpha_{1} + a_{22}\alpha_{2} + a_{32}\alpha_{3} + v_{2} = p_{2}$ $a_{13}p_{1} + a_{23}p_{2} + a_{33}p_{3} + a_{13}\alpha_{1} + a_{23}\alpha_{2} + a_{33}\alpha_{3} + v_{3} = p_{3}$

Price equation with excise tax (rates)

In the language of matrix algebra:

$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}_{excise} \begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}_{basic} + \begin{bmatrix} 1 - a_{11} & -a_{21} & -a_{31} \\ -a_{12} & 1 - a_{22} & -a_{32} \\ -a_{13} & -a_{23} & 1 - a_{33} \end{bmatrix}^{-1} \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$$

Here the excise tax produces a clear tax schifting

Price equation with ad valorem taxes (rates) such as European VAT

 $a_{11}p_{1} + a_{21}p_{2} + a_{31}p_{3} + v_{1} = p_{1}$ $a_{12}p_{1} + a_{22}p_{2} + a_{32}p_{3}(1+t_{3}) + v_{2} = p_{2}$ $a_{13}p_{1} + a_{23}p_{2}(1+t_{2}) + a_{33}p_{3}(1+t_{3}) + v_{3} = p_{3}$

Firms may not be entitled to full deduction

- Firms exempted from VAT have no right to deduct the VAT paid on their taxed purchases
- Some intermediate transactions may be allowed only for partial deduction
- "Forfeit" (or "standardized") systems
- The Agricultural special system
- Government Agencies

Price equation with ad valorem taxes (rates) such as European VAT

• In the language of matrix algebra:

$$\begin{bmatrix} p_1 \\ p_2 \\ p_3 \end{bmatrix}_{vat} = \begin{bmatrix} 1 - a_{11} & -a_{21} & -a_{31} \\ -a_{12} & 1 - a_{22} & -a_{32}(1 + t_3) \\ -a_{13} & -a_{23}(1 + t_2) & 1 - a_{33}(1 + t_3) \end{bmatrix}^{-1} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix}$$

 The ad valorem tax shifting is not additive to the basic price solution

Long run Price formation with *ad valorem* and excise tax in sector j

 $p_{j} = \sum_{i=1}^{n} a_{ij} p_{i} (1 + t_{ij}) + \sum_{i=1}^{n} a_{ij} \alpha_{ij} + v_{j}$

Indirect tax flows in the Intermediate Consumption Table of the Italy IO Matrix

Some statistics

Excise taxes are recorded in 73% flows

> Ad valorem taxes are recorded in 64% flows

Indirect Taxes between Intermediate Consumption and Final Demand

Intermediate Consumption is the tax base of:

14% of the ad valorem taxes

45% of the excise taxes

VAT in the Intermediate Consumption

- This ad valorem tax applied by the European Union Member States has been designed to be an indirect tax on Personal Consumption Expenditure.
- So called VAT 'impurities' extend VAT tax base to intermediate consumption flows
- About VAT 'impurities', see Bardazzi,Grassini,Longobardi (1991) "Value-Added Taxes and Other Indirect Taxes in EEC Country Model. The Italian Case ", Economic Systems Research, n. 1, pp. 37-47

Main VAT bases in Intermediate Consumption

82% of the VAT tax yield comes from 5 sectors out of 59 (Eurostat standard Input-output EU country matrices)

Financial intermediation services
 Insurance and pension funding services
 Services auxiliary to financial intermediation
 Public administration and defence services
 Health and social work services

Main VAT bases in Intermediate Consumption

Being mostly industry specific, the treatment of an *ad valorem* tax such as the European VAT deserves a a special attention in modelling price equations

After all

The construction of time series of excise and *ad valorem* tax matrices and the design of indirect tax scenarios is a challenging task up to the macroeconomic multisectoral model builder.

Thank you for your attention

Maurizio Grassini