Prepared for the 16th INFORUM World Conference held at European University of Lefke in North Cyprus, August 31-September 7, 2008

Labor Share in the Change of Japanese Industrial Structure

Toshiaki Hasegawa

Professor of International Economics Faculty of Economics Chuo University, JAPAN

Higashinakano 742-1, Hachioji, Tokyo, Japan 192-0393 tel: +81-426-74-3450 or 3424 fax: +81-426-74-3425 e-mail: vinomac@tamacc.chuo-u.ac.jp; thasegaw@bi.mbn.or.jp URL: http://c-faculty.chuo-u.ac.jp/~vinomac/

LABOR SHARE IN THE CHANGE OF JAPANESE INDUSTRIAL STRUCTURE

Toshiaki Hasegawa CHUO UNIVERSITY, JAPAN

ABSTRACT

The investigation by E. Dietzenbacher et al. (2004) has shown the decline of the U.S. labor share for a term of 1982-1997 in spite of the rise of labor productivity. This controversial observation must be inquired to be valid for the other economy or not, and it should be explained for those dynamic causes of change. This research adopted the extended multiplicative structural decomposition analysis (SDA) by Dietzenbacher (2000 and 2004) to analyze the labor share in the change of Japanese industrial structure at 66-industry level. In this approach, the labor compensation's share in the value-added is decomposed into five parts of Fisher-type indexes as follows;

- 1. Changes in the real compensation per hour worked,
- 2. Changes in the value-added per hour worked,
- 3. Changes in the labor input coefficient as the structural change in technology,
- 4. Changes in the intermediate input coefficient,
- 5. Changes in the final demands.

The last two parts are known as the typical terms common to SDAs. The first two parts reflect the shift effects and the other three parts reflect the share effects. These two kinds of effects are similar to Slutsky's equation developed in analyzing the effects of price change to differentiate two parts of the income effect and the substitution effect.

This analysis adopts the database of JIDEA model version 7 constructed for the inter-industry based dynamic macroeconomic model of Japanese economy. The data in analysis was divided into two periods of time; the period of 1985-1995 and the period 1995-2005.

Decomposition approach connected with value added side

The simplest explanation of the structural decomposition approach to the economic change is shown in the following scheme. The achievement of the economic activity, is basically expressed in terms of the product of price and quantity; $Y = p \times q$.

$$\frac{Y_0 + \Delta Y}{Y_0} = \frac{Y_0 + (Y_1 - Y_0)}{Y_0} = \frac{p_0 q_0 + p_0 (q_1 - q_0) + (p_1 - p_0) q_0 + (q_1 - q_0) (p_1 - p_0)}{p_0 q_0}$$
This correction is illustrated in Figure 1, using the mass of A. B. C. and D.

This expression is illustrated in Figure 1, using the areas of A, B, C, and D.

In this analysis of decomposition of labor share, we used the data in nominal terms. Such treatment makes us possible to identify the influences caused by the price change, the quantity

When we argue about the labor share in their economic activity, we have to concentrate into such a variable of labor as the activity involved in the domestic production, excluding the foreign made products. We have to separate the part of the original intermediate demand in the competing input-output table into two parts, i.e., the intermediate demand for the domestically produced goods and the intermediate demand for the imported products.

In order to make the Japanese non-competing input-output table in a framework of JIDEA model consisting of 66 industry classification, I introduced the definition of the "domestication". The domestication is defined in two ways;

$$\rho_{j} = \frac{\sum_{i} q_{ij} + V_{j}}{q_{j}}, \text{ and}$$
$$\rho_{i} = \frac{q_{i} - x_{i}}{q_{i} - x_{i} + m_{i}}.$$

change and the change of both.

The former definition was adopted in his analysis by Fujikawa (1999). The latter definition was used by Jackson (1998), Lahr (2001), and Dietzenbacher (2004). In this paper, I adopted the former definition.

The labor employed which we would like to focus on, is only involved into the part of the

intermediate demand for the domesticated products, not involved into the imported products made in foreign countries subtracted from the total output production.

The import (imp) is assumed as a constant portion of intermediate demand plus domestic final demand. We call this constant portion as the import coefficient (impc_i) for each i-th industry.

 $impc_i = imp_i / (totint_i + dfdtot_i), or$ $impc = A^m / (Aq + f^d)$ expressed in vector and matrix,

where imp denotes the import, totint for the total intermediate demand, and $dfdtot_i$ (or f_i^d) for the domestic final demand in the supplying i-th industry in the notation of JIDEA model. The domestic final demand total (dfdtot) consists of the sum of cob + coh + cog + ing + ipr + ven = fd - exp - adj in JIDEA notation.

In the non-competing import type of input-output table, we can formulate the supply and demand identity of the domestic goods and the imported goods separately.

$$q = A^{d}q + f^{d}$$
$$m = A^{m}q + f^{d}$$

Defined the ratio of domestication as the formula, $\rho_j = \frac{\sum_{i} q_{ij} + V_j}{q_j}$, the ratio of the

import in the value-added criterion is calculated as follows;

$$\tau^{m} = [1,...,1]A^{m}(I - A^{d})^{-1} = \zeta A^{m}(I - A^{d})^{-1}$$

The level of import share and domestication in the industry are illustrated in the following Table 1. Prepared the import coefficient in the original competing input output table defined as the ratio of the import to the sum of the total intermediate demand and the domestic final demand, we could obtain the domesticated input output table. We use this domesticated input output table to calculate the decomposed causes in the change of labor share related to the industrial structure change and growth.

Table 1 Import Share and domestication ratio; impc=imp/(totint+dfdtot)					
		1985	1995	2005	domestication index
		exogenous	exogenous	exogenous	rho 1985
1	Agri,fishe	0.1845	0.1371	0.1534	0.9309
2	Metalic or	0.9291	0.9679	0.9957	0.9640
3	Non-met or	0.1576	0.1173	0.1387	0.9747
4	Coal	0.8581	0.8880	0.9935	0.9627
5	Petro & ga	0.9993	0.9720	0.9919	0.9936
6	Food prod	0.0668	0.1370	0.1538	0.9794
7	Beverages	0.0366	0.0675	0.0541	1.0054
8	Textiles	0.1021	0.1124	0.2185	0.9825
9	Clothing	0.0896	0.2685	0.5931	1.0014
10	Wood	0.1195	0.1953	0.2965	0.9678
11	Furniture	0.0321	0.0672	0.1825	0.9806
32	Puln&naper	0.0432	0.0519	0.0562	0.9814
13	Printing	0.0063	0.0078	0.0087	0.9855
34	Inorg chem	0.1006	0.0961	0.1879	0.9843
15	Petro chem	0.0128	0.0063	0.01.53	0.9877
16	Organic ch	0.1453	0.1695	0.2740	0.9958
17	Syn resin	0.0527	0.0548	01.590	1.0020
18	Chem fiher	0.0362	0.0527	01402	0.9971
19	Final chem	0.0764	0.0936	01413	0.9819
20	Medicine	0.0791	0.0725	01391	0.9923
21	Petro prod	01512	01130	01355	0.9785
22	Coal prod	0.0024	0.008.5	0.0496	1 0031
22	Plastic pr	0.0108	0.0005	0.0450	0.0871
22	Ruhher pro	0.0505	0.0210	01736	0.9646
25	Glass	0.0383	0.0505	01455	0.9742
26	Camant	0.0019	0.0001	0.0054	0.9786
20	Pottery	0.00256	0.0570	0.0004	0.9700
27	Oth caromi	0.0200	0.0270	01162	0.9879
20	brow & sta	0.0785	0.0712	0.7202	0.0080
30	Nonfer met	0.0200	0.5462	0.0000	0.9900
21	Proce Nowf	0.4374	0.0494	0.4922	0.9527
22	Matal cons	0.0000	0.0454	0.0270	0.5500
22	Matal othe	0.0020	0.0000	0.0570	0.0044
21	Machina aa	0.0275	0.0230	0.0035	0.9582
25	Machina m	0.0207	0.0477	0.0345	0.3012
26	Machine of	0.0425	0.0000	0.2040	0.5720
27	Mach offic	0.0424	0.0454	0.0330	0.9402
28	Mach hour	0.0121	0.0005	0.2232	0.5520
20	Computer	0.0220	0.2552	0.2000	0.0007
40	Computer Computer	0.2024	0.5552	0.0727	0.9749
41	Fl onlderma	0.0250	0.2550	0.0707	0.5005
42	to apraceme	0.0524	0.2457	0.2020	0.5780
42	Flectro no	0.2004	0.0271	0.7563	0.5002
42	Harry alac	0.0245	0.0072	0.2205	0.5004
45	Oth light	0.0404	0.0302	0.1304	0.3752
46	Motor valvi	0.0485	0.0055	0.2554	0.5750
40	Other vehi	0.0232	0.2003	0.2204	0.3033
48	Other tran	0.0047	01025	0.0230	0.3774
40	Precision	0.1276	0.2020	0.2508	0.3013 A 00K9
50	Mfg miscal	01265	0.2714	0.2801	1 0001
51	Constructi	0.0000	0.0000	0.0000	0.0002
52	Civil ono	0.0000	0.0000	0.0000	0.5500
52	Civil eng	0.0000	0.0000	0.0000	0.3577
51	Elec nower	0.0000	0.0000	0.0000	0.5005
57	City and	0.0002	0.0000	0.0000	1 /1024
.56	Water & so	0.0004	0.0004	0.0000	1.0254
57	Trade	0.0007	0.0007	0.0002	0.98/1
58	Rinance	0.0227	0.0020	0.0002	0.50+1
50	Transport	0.0009	0.0718	0.0045	0.9774
55	Communicat	0.0003	0.0710	0.0985	0.3000
61	Government	0.0040	0.0001	0.0001	0.3007
62	Oth public	0.0000	0.0000	0.0000	0.5005 A 0X05
62	Inform ser	0.0020	0.0024	0.0007	0.3035
64	Ruisnas sa	0.0300	0.0227	0.0290	0.3772
65	Persul Ser	0.0207	0.02+5	0.0507	1 0052
66	Office sum	0.0520	0.0741	0.0568	1.0005
	-gores out	0.0024	0.0772	0.0000	0.9803

The equations and the variables for the industry i in this analysis are all similar to the Dietzenbacher, et. al. (2004);

 $\begin{aligned} v_i &= value \ added \\ w_i &= labor \ compensation \\ l_i &= labor \ input \ in \ terms \ of \ hour \ worked \\ \pi_i &= v_i \ / \ l_i \ = labor \ productivity \\ \alpha_i &= w_i \ / \ l_i \ = wage \ per \ labor \ worked \\ \lambda_i &= l_i \ / \ x_i \ = labor \ worked \ per \ total \ output \\ \sigma_i &= w_i \ / \ v_i \ = labor \ share; \ wage \ in \ value \ added \end{aligned}$

where $v = \sum_{i} v_i, w = \sum_{i} w_i, and l = \sum_{i} l_i$.

 $\pi = v/l$, $\alpha = w/l$, and $\sigma = w/v$ will be calculated as an aggregated values.

$$\alpha = \frac{\alpha' \hat{\lambda} L f}{e' \hat{\lambda} L f}$$
, where $e' = (1, ..., 1)$. The labor productivity as a whole economy is expressed

as follows;

$$\pi = \frac{v}{l} = \frac{\pi' \hat{\lambda} x}{\lambda' x} = \pi' s = \frac{\pi' \hat{\lambda} L f}{e' \hat{\lambda} L f}$$

$$\sigma = \frac{w}{v} = \frac{\alpha' \,\hat{\lambda} L f}{\pi' \,\hat{\lambda} L f}.$$

The final task in this research is to decompose the labor share in the value added into the possible causes.

$$\sigma = \frac{w}{v} = \frac{w/l}{v/l} = \frac{\alpha}{\pi},$$

where α shows the wage per total income; $\alpha = \frac{w}{l} = \frac{\alpha' \hat{\lambda} x}{\lambda' x} = \alpha' s$.

^ denotes the diagonal matrix. $x = (I - A)^{-1} f \equiv Lf$, where $A = A^d$ implies the input coefficient excluding import, and $L = (I - A)^{-1}$ shows Leontief Inverse.

We can calculate the labor share of the input-output based output in the following equations in the decomposition approach as described by Dietzenbacher, et. al.

$$\frac{\sigma_{1}}{\sigma_{0}} = \left(\frac{\alpha'_{1}\hat{\lambda}_{1}L_{1}f_{1}}{\alpha'_{0}\hat{\lambda}_{1}L_{1}f_{1}}\right) \left(\frac{\pi'_{0}\hat{\lambda}_{1}L_{1}f_{1}}{\pi'_{1}\hat{\lambda}_{1}L_{1}f_{1}}\right) \left(\frac{\alpha'_{0}\hat{\lambda}_{1}L_{1}f_{1}}{\alpha'_{0}\hat{\lambda}_{0}L_{1}f_{1}}\frac{\pi'_{0}\hat{\lambda}_{0}L_{1}f_{1}}{\pi'_{0}\hat{\lambda}_{1}L_{1}f_{1}}\right)$$

$$\times \left(\frac{\alpha'_{0}\hat{\lambda}_{0}L_{1}f_{1}}{\alpha'_{0}\hat{\lambda}_{0}L_{0}f_{1}}\frac{\pi'_{0}\hat{\lambda}_{0}L_{0}f_{1}}{\pi'_{0}\hat{\lambda}_{1}L_{1}f_{1}}\right) \left(\frac{\alpha'_{0}\hat{\lambda}_{0}L_{0}f_{1}}{\alpha'_{0}\hat{\lambda}_{0}L_{0}f_{0}}\frac{\pi'_{0}\hat{\lambda}_{0}L_{0}f_{0}}{\pi'_{0}\hat{\lambda}_{0}L_{0}f_{1}}\right),$$

and

$$\frac{\sigma_{1}}{\sigma_{0}} = \left(\frac{\alpha'_{1}\hat{\lambda}_{0}L_{0}f_{0}}{\alpha'_{0}\hat{\lambda}_{0}L_{0}f_{0}}\right) \left(\frac{\pi'_{0}\hat{\lambda}_{0}L_{0}f_{0}}{\pi'_{1}\hat{\lambda}_{0}L_{0}f_{0}}\right) \left(\frac{\alpha'_{1}\hat{\lambda}_{1}L_{0}f_{0}}{\alpha'_{1}\hat{\lambda}_{0}L_{0}f_{0}}\frac{\pi'_{1}\hat{\lambda}_{0}L_{0}f_{0}}{\pi'_{1}\hat{\lambda}_{1}L_{0}f_{0}}\right) \\
\times \left(\frac{\alpha'_{0}\hat{\lambda}_{1}L_{1}f_{0}}{\alpha'_{1}\hat{\lambda}_{1}L_{0}f_{0}}\frac{\pi'_{1}\hat{\lambda}_{1}L_{0}f_{0}}{\pi'_{1}\hat{\lambda}_{1}L_{1}f_{0}}\right) \left(\frac{\alpha'_{1}\hat{\lambda}_{1}L_{1}f_{1}}{\alpha'_{1}\hat{\lambda}_{1}L_{1}f_{0}}\frac{\pi'_{1}\hat{\lambda}_{1}L_{1}f_{0}}{\pi'_{1}\hat{\lambda}_{1}L_{1}f_{0}}\right).$$

In the following Figure 2, 3, and 4, we prepared the historical figures of the related variables in Japan. However, the decomposition approach illustrates the structure at the specific point of time.

Figure 2 Output, Value-added and Wage in Japan

The change in labor share as a whole economy does not correspond to the fluctuation in the output as a whole economy. It is necessary to inter-exchange the sets of variables which are measured at time(0) and time(1). The results of the complete compilation will be given shortly.

Figure 3 Japanese labor share

Figure 4 Change in Labor Compensation

Reference

Erik Dietzenbacher, Michael L. Lahr and Bart Los, (2004), "The decline in labor compensation's share of GDP: a structural decomposition analysis for the United States, 1982 to 1997", in E. Dietzenbacher, M. L. Lahr (eds.), Wassily Leontief and Input-Output Economics, Cambridge University Press.

Erik Dietzenbacher, and Bart Los,(2000), "Structural Decomposition Analyses with Dependent Determinants", Economic Systems Research, Vol. 12, No. 4, 2000, PP.497-511.

E. Dietzenbacher (2000), "Labor productivity in Western Europe 1975-1985: an intercountry, Interindustry comparison", Journal of Regional Science, 40, pp.425-452.

K. Fujikawa (1999), Input Output Analysis: Foundations and Extensions, Sohbunsha, 1999.