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Abstract

In a well-know essay, first published in 1953, ("Static and Dynamic
Linear General Equilibrium Models"), Richard Goodwin analyses the
dynamic adjustment of quantities and prices to long period
equilibrium, in a set of n "Walrasian" markets. He treats the cross
adjustment of prices and quantities as a linear Hamiltonian vector
field. In more recent works Goodwin has introduced non-linear
perturbations in his multisectorial adjustment model. He assumes
that real consumption depends non-linearly on relative prices. This
paper shows that: 1) Goodwin's behavioural hypotheses are
compatible with the assumption that agents maximize; 2) if the
dynamic process is Hamiltonian, symplectic coordinates changes are
essential tools of analysis; 3) if real wage is rigid and returns
to scale are not constant, the Hamiltonian model can generate
chaotic transients or, in extreme cases, pure chaotic motions.
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1. Introduction 

In a pioneering work of 1953 ("Static and Dynamic Linear General
Equilibrium Models") Richard Goodwin presents a leading analysis of
the dynamic adjustments of quantities and prices to their long
period equilibrium values. He takes two different kinds of
adjustment processes into consideration: the uncoupled adjustment
of prices and quantities, i.e. a gradient vector field in which
prices react to excess profits per unit of output, and quantities
react to excess demands per unit of output, and the crossed
adjustment of prices and quantities, i.e. a Hamiltonian vector
field in which the time derivative of prices depends on excess
demands per unit of output, and the time derivative of gross
quantities depends on excess profits per unit of output. In both
cases the properties of the dynamic processes are analysed by
treating the set of intersectoral demand coefficients as a linear
operator on its generalized eigenspace.

In more recent works (for example "Swinging along the Autostrada:
Cyclical Fluctuations along the Von Neumann Ray", (1989) or in
"Chaotic Economic Dynamics", (1990)), Richard Goodwin introduces
some elements of non-linearity in his basis multisectoral model; by
assuming that the wage is fixed in nominal terms, he lets real
consumption and investment demand depend non-linearly on relative
prices. Moreover, in "The Dynamics of a Capitalist Economy",
(1987), the linear crossed-dual adjustment process is represented
by a Hamiltonian vector field in symplectic coordinates. This opens
a wide range of fascinating potential developments for the analysis
of adjustment processes in multisectoral systems subject to real
perturbations. 

This paper has two aims: firstly, it aims to investigate whether
the behavioural hypotheses adopted by Goodwin are compatible with
the assumption that agents maximize and, if so, what is the nature
of their respective objective functionals. Secondly, it aims to
analyse the dynamic behaviour of his 1987 Hamiltonian model,
subject to the non-linear perturbation he suggests in "Chaotic
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Economic Dynamics", and to point out some of the fascinating
developments this approach may lead to. 

In paragraph 2, Goodwin's 1953 cross-dual model is derived from an
optimal control model, the objective functional of which is given
by the aggregate excess profits function, i.e. by the sum of
sectoral excess profits. In paragraph 3, the resulting Hamiltonian
vector field is transformed, by a symplectic change of coordinates,
into Goodwin's 1987 linear model. This model generates simple
harmonic motions, which are illustrated by a two sector numerical
example. Hence the long period equilibrium solution is stable, but
the model is structurally unstable. In order to simplify the
subsequent analysis of the linear model subject to non-linear
perturbations, a further symplectic transformation to action angle
coordinates (non-linear polar coordinates) is performed. 

In paragraph 4, the following assumptions are introduced: a) the
nominal wage is fixed and entirely spent for consumption; b)
consumer utility functions are Cobb-Douglas; c) consumers aim to
maximize their current utility. Under these hypotheses, Goodwin's
1990 consumer demand functions are easily derived. Since prices and
the real wage are flexible, the resulting perturbed Hamiltonian may
have equilibria which are sinks. Hence, in the numerical example,
the closed orbits solution disappears and the long period
equilibrium solution becomes asymptotically stable.

In the last paragraph, the analysis is restricted to a two sector
model. Goodwin's basis hypotheses are slightly modified. It is
assumed that the unperturbed two degree of freedom Hamiltonian is
non-linear and has a homoclinic orbit. It is further assumed that
the perturbation is itself periodic. By applying Melnikov's method,
it is then proved that the perturbed Hamiltonian system has
transverse homoclinic orbits and, therefore, Smale horseshoes.
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(2.1)

(2.2)

(2.3)

2. Goodwin's "Walrasian" model as an optimal control model.

Basic assumptions:

a) Technology in the n-sectors economic system can be represented
as a linear operator in a Euclidean n-space E. The associated
matrix in standard coordinates is A=[a ], i=1...n, j=1...n.ij

b) The economic system as a whole pursues the aim of maximizing 
excess profits in the time interval t -t , t0ú, i.e.0 1

where p  (t)0E  and q(t)0E are the n-dimensional vectors of thet *

deviations of relative prices and gross quantities from their long
period equilibrium values and E  is the dual space of E.*

c) Relative prices are flexible and their time rates of change are
increasing linear functions of sectoral excess demands:

Equations 2.1 and 2.2 represent an example of a dynamic control
problem where p(t) are the state variables, q(t) are the control
variables, 2.1 is the objective functional and 2.2 are the
equations of motion, i.e. the n-dimensional set of constraints on
the objective functional.  

The Hamiltonian function is 
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(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

where 8 , 8  (t) are conjugate or costate variables. Necessary0
t

conditions for a maximum are

where D tH  and D tH are vectors of first derivatives of H. Hence8 p

  .                               .
  8 (t) is a scalar multiple of p(t). On the other hand, from
equation 2.5 we have

hence

and, setting  8 =10

Necessary conditions tell us that, when the objective functional is
maximized with respect to the control variable q(t), shadow prices
8(t) coincide with excess prices. In this case, H(t) is identically
0 at all t, therefore equation 2.6 does not help in determining the
optimal path of q(t). 

We shall therefore turn our attention to the transversality
condition. If the planning horizon is unbounded and the right hand
side boundary is free, we can construct a one-parameter family of
admissible trajectories of the state variables p(t;ß), with
p(t;0)=p(t,q*(t)) where q*(t) is an optimum control; the
transversality condition then requires that
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(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

where D p(t;0) is the derivative of p(t;ß) at p(t,q*(t)). Aß

solution to 2.10 is

i.e the transversality condition is satisfied if long period
equilibrium is globally asymptotically stable. Since p(t) depends
on q(t), equation (2.10) is in fact a constraint on the dynamic
behaviour of q(t). From equation 2.4 we have

Setting k=(y  - y  ), i.e equal to excess final demand at t=0, weo o
e

have

hence the constraint on the dynamic behaviour of q(t) is

This means that long period equilibrium prices are globally
asymptotically stable if gross outputs converge asymptotically to
any initial level of gross demand. Long period equilibrium prices
are therefore independent of output or, equivalently, they are not
associated with any particular level of final demand or of
employment. On the other hand, the assumption that gross outputs
are rapidly adjusted to demand and equation 2.4 necessarily imply
that equation 2.10 (the transversality condition) is verified. We
might call this assumption the "Keynesian multiplier asymptotic
stability assumption".

However, this is not the case in Goodwin's "Walrasian" model. In
order to find Goodwin's solution to the optimal control problem,
let us first assume that the planning horizon is bounded, i.e. that
the time interval over which the objective functional is to be
maximized ends at t , which is finite.1

Call M  the smooth manifold generated by the intersection of s1

hypersurfaces S  (t,p,q)=0, u=1...s, s$1, M   the manifold generatedu
f

by equation t-t =0 and set M= M 1M . Then, if {p,q} ends at the1 1 f

point {t ,p(t ),q(t )}0M, and q(t ) is an optimal control, the1 1 1 1

transversality condition requires that vector {p,q} must be
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(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

orthogonal to M (t ) or, equivalently, normal to any vector in the1 1

tangent hyperplane at {p(t ),q(t )}. We shall prove that: 1 1

1) the transversality condition is satisfied if M   is the manifold1

generated by the bilinear form 

where k…0 and M is a non-singular, block diagonal matrix

 
2) If B=(I-A) and the time behaviour of prices is given by the
equations of motion 2.4, the optimal control is given by

Proof:  

Suppose that B=I. Equation 2.15 then becomes

The equation of a vector . in the tangent hyperplane through >̄
={p,q}0M  is 1

where D >̄ is the Jacobian matrix of > at >̄. The transversality>

condition is
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     See appendix 2.A.1

     See appendix 2.B.2

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

                                  
which is always satisfied by any >̄(t )0M (t ) . Hence, if B=I, an1 1 1

1

optimal trajectory which satisfies the transversality condition at
t  is any point {p̄(t ), q̄(t )} which is a solution of 2.18.1 1 1

Differentiating 2.18 with respect to time we obtain:

If we set A=0 in the equations of motion 2.4 and substitute $p(t) in
2.21, we obtain

hence

and

Now, assume that B=(I-A). S becomes

Setting ex>  =(I-A )p, ex>  =(I-A)q and ex>={ex> , ex> }, proposition1 2 1 2
t

(1) can be proved as in the previous case . The transversality2

condition now becomes

which is verified by any {p̄,q̄}0M. Since M  D  (e$x>)M is the imaget
ex>

of D  (p̄,q̄) in the space spanned by p,q



M '
(I&A t) 0

0 (I&A)

q t(t)(I&A t)(I&A)0q(t)%2p t(t)(I&A)(I&A t)0p(t)'

0p t(t)(I&A)[&0q(t)%(I&A t)p(t)]'0

0q(t)'(I&A t)p(t)

lim
t64

>(t)

S 1(t,p,q)'p t(t)(I&A)(I&A t)p(t)%q t(t)(I&A t

9

     See Hadley and Kemp (1971), theorem 4.3.2, p. 246.3

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

2.26 and 2.20 are the same equation in different coordinates. The
time derivative of S is now

which, together with equation 2.4, implies

Hence, the dynamic behaviour of the optimal control is given in
this case by 

which proves proposition (2).

We will now release the assumption that the planning horizon is
finite. Our model merely requires that 

lies in a bounded manifold M, therefore, if lim  >(t) exists, ittv4

is possible to choose >(t) so that 2.31 is orthogonal to M at the
terminal point. When this is done, any necessary conditions at the
terminal point of the trajectory will be satisfied .3

Consider the following smooth hypersurfaces

where k…0 is a finite real constant, and
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     E  and E are dual, Euclidean n-spaces and ú is the real4 *

line.

     See appendix 2.C.5

(2.33)

(2.34)

where t $w, and w is a sufficiently large real number. Their1

intersection

is a (2n-1) dimensional smooth manifold  in E  x E x ú. Equation4 *

2.32 states that both lim p(t) and lim q(t) must lie in M   ,tv4 tv4 1

i.e. in the manifold generated by S . If k…0 is finite, M  is1
1

bounded . From equation 2.4 we know that, since lim q(t) exists,5
tv4

lim  &p(t) also exists. The intersection of S  and S  is the set oftv4
1 2

points {p(t ),q(t )} which satisfy the bilinear map 2.32 at t=t ,1 1 1

hence {p(t ), q(t )}0M, and {p(t ),q(t )} is orthogonal to M  (t ).1 1 1 1 1 1

This holds for any t  $ w, with sufficiently large w, hence lim1 tv4

{p(t),q(t)} is orthogonal to M at the terminal point and the
dynamic behaviour of the optimal control is again given by equation
2.30.

We may then conclude that Goodwin's "Walrasian" prices and
quantities adjustment equations can be regarded as the solutions to
an optimal control problem with an unbounded planning horizon,
provided that the terminal point lies in a bounded smooth manifold
generated by equation 2.32. This equation states that the the sum
of the squared modules of the two n-vectors p(t)(I-A) and (I-
A)q(t), which respectively represent excess profits and excess
final demands per unit of output, must remain constant during the
whole adjustment process; i.e. that all solution curves in the 2n-
Euclidean space of excess profits and excess final demands per unit
of output lie on a hypersphere of radius %k, centred at the origin.
In physics, this condition means that the total energy of the
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     See Hirsch and Smale (1974), p. 292.6

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

system is conserved . How shall we interpret this condition in the6

context of a model aimed at representing the process by which a set
of n "Walrasian" markets reacts to disequilibrium? 

We know that the necessary conditions for a maximum of the
objective functional 

where p', p* are actual and equilibrium relative prices
respectively, and q', q* are actual and equilibrium gross products
respectively, require that

i.e. that shadow prices are equal to current market prices. If 

the objective functional is equal to 0. However the terminal
condition requires that

and the transversality condition

tells us that quantities will change as long as p'…p*. Hence the
terminal condition excludes both the possibility that prices and
quantities converge asymptotically to their long period values, and
the possibility that prices and quantities increase or decrease
infinitely. 

In standard Cartesian coordinates the origin of axes represents
long period equilibrium. Hence %k - the distance from the origin of
vector {(I-A)q, (I-A  )p } - can be interpreted as a measure of thet

"degree of disequilibrium" which exists in the economic system. It
then becomes evident that the terminal condition 2.15, by keeping
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     Of course, this condition constrains the dynamic behaviour7

of the model rather arbitrarily. I leave it to the reader to
decide whether it is more or less legitimate than the previously
mentioned "Keynesian multiplier stability assumption" or the
local asymptotic stability assumption, which is a common feature
of a large part of the recent new-classical literature on
economic growth. On this point see, for example, Serena Sordi
(1990).

     i.e., the unperturbed and the perturbed vector fields are8

not topologically equivalent. See Guckenheimer and Holmes (1990),
p. 39. 

the existing degree of disequilibrium constant, serves the purpose
of assuring that the model is globally stable, although it is not
globally asymptotically stable . We might then call the terminal7

condition 2.15 "Goodwin's Walrasian stability assumption". On the
other hand, as we shall soon see, Goodwin's Hamiltonian model is
structurally unstable .8
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(2.A.1)
(2.A.2)

(2.A.3)

(2.A.4)

(2.A.5)

(2.A.6)
(2.A.7)

(2.A.8)

(2.A.9)

Appendix 2.A

Set

The Jacobian matrix of >̄ is 

where
 

The transversality condition at t=t  is 1

where
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we have

and 

Hence
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(2.B.1)

(2.B.2)

(2.B.3)

(2.B.4)

(2.B.5)

(2.B.6)
(2.B.7)

(2.B.8)

(2.B.9)

Appendix 2.B

Set
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and

The transversality condition then becomes
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(2.B.10)

(2.B.11)

we have

where

and
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(2.B.12)

(2.B.13)

hence
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(2.C.1)

2.C.2)

(2.C.3)

Appendix 2.C

Equation 2.32 can be reformulated as follows

where k is any finite real constant …0. If ex> =0, j=1...i-1,j

i+1...2n, 2.C.1 implies that

Since this holds for any i=1...2n, +%k, -%k are the upper and lower
bounds of each ex> (t)0ex>(t). Hence ex>(t) is bounded. Buti

hence M  is bounded.1
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     See Abraham and Marsden (1987) pp. XXI, XXII. 9

(3.1)

(3.2)

(3.I.1)

(3.I.2)

3. A symplectic change of coordinates.

Let us call ex q   the i-th element of vector (I-A)q, equal to thei

excess demand of the i-th commodity, and ex p   the i-th element ofi

vector (I-A )p, equal to the excess profit of the i-th sector.t

Hamilton's equations 2.4 and 2.30 can be written as

where

DEFINITION 3.I: A canonical or symplectic coordinates
transformation of 3.1 is a transformation 0=f(>), where 
f: ú   x ú   6 ú   x ú   is smooth, which satisfies the followingn n n n

conditions:

a) if >(t) is the solution of Hamilton's  equations 3.1.,
0(t)=f(>(t)) is the solution of equations

           *0i

where Q =[))))] is the Jacobian of f and Q  is the transpose of Q.ij t

           *>  j

b) if and only if QJQ =J, the equations for 0 will be Hamiltoniant

with energy  9

In order to simplify argument, let us make the following 

HYPOTHESIS 3.i : (I-A) has n distinct real eigenvalues 8  ,...,81 n

.
     ^
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     See, for example, Eisele and Mason (1970), part II.10

      i.e. (ex>)  = (ex0)  Q.11 t t

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

Call 8 the diagonal matrix of the eigenvalues of (I-A) and X the
matrix of the eigenvectors belonging to them. Then we have 

We shall prove that the transformation 

is a symplectic trasformation, i.e. it  satisfies conditions a) and
b) of Definition 3.I. Condition b) can be easily checked, since

 
Condition a) is satisfied if 

From 3.4 we have 

Setting

from condition b) we have

Since the column vector ex> is trasformed contravariantly, the
scalar product k(ex>) is invariant to the coordinates
transformation 3.7 only if the row vector ex>  is transformed
covariantly , i.e. if10 11

Thus equation 3.8 becomes
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(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

and

Substituting expression 3.12 in equation 3.6 we obtain

Hence Hamilton's equations in the new symplectic coordinates are

as in Goodwin and Punzo (1987), pp. 79-82. 

Alternatively, condition a) can be proved as follows: set

hence

From 

we have

Since QJQ =J and 3.9 is verified, we havet

and

Hence 3.16 becomes

Integral curves of system 3.14 can be easily found : taking the
time derivative of the first equation of 3.14 and substituting x0
from the second equation we obtain a system of n second order  
linear differential equations
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     Goodwin and Punzo, (1987), p. 73.12

(3.22)

(3.23)

(3.25)

(3.26.1)

(3.26.2)

which, under hypothesis 3.i, has only imaginary roots with zero
real parts

By Euler's formula

hence, in symplectic coordinates, all integral curves of the
Hamiltonian system 3.1 lie on a manifold given by the Cartesian
product of n circles of radius 1. In Goodwin's own words: "The
motion is dynamically stable, in the sense of bounded, but is not
asymptotically stable towards equilibrium. It is structurally
unstable (...) so that a slight error in, or perturbance of, the
parameters would lead either to the disappearance of the cycle or
to its explosion without limit."  Figure 1 is the phase portrait12

of a numerical example of system 3.14 (Navajo), in the case where
n=2. Figure 2 is the graph of B  vs. time. The parameters and the
initial conditions of this simple two-sector system are given in
table 1. This numerical example provides the foundations on which
the more complex examples of the following paragraphs will be
built. 

In order to have a greater insight into the dynamic behaviour of
the vector field 3.1 and to simplify the analysis of the perturbed
Hamiltonian, which will be introduced in the next paragraph, it is
useful to perform a further, symplectic change of coordinates. For
the moment, we will go on assuming that n=2; equations 3.14 can
then be written as
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     See Guckenheimer and Holmes (1983), pp.212-215.13

(3.26.3)
(3.26.4)

(3.27.1)
(3.27.2)

(3.28.1)
(3.28.2)

(3.29.1)(3.29.2)

(3.30.1)
(3.30.2)

and equation 3.22 can be written as

Equations 3.26 and 3.27 make clear that vector field 3.14 can be
divided into two uncoupled Hamiltonians:

Setting 

we have

In this case it is possible to further transform the linear non-
orthogonal coordinates of system 3.14 into non-linear polar
coordinates (action angle coordidates ). Set13
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(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

hence

The Hamiltonian becomes

hence

Setting

the reduced Hamiltonian system becomes:

Since k does not depend explicitly on N, the reduced system 3.36 is
autonomous. The linearized Poincaré map can thus be easily obtained
by solving system 3.36 based at {( , B }. The general solution isE E

1 1

where S=(8 /8 ). 3.37 is 2B periodic in N. Thus the linearized1 2

Poincaré map is 

Its eigenvalues are again complex conjugate, with unit modules

By applying De Moivre's theorem we obtain the solution for B , 1

which is periodic with period 2BS. Thus the long period equilibrium
solution {0,0} is "an elliptic centre surrounded by a family of
closed curves filled with periodic points if S is rational, and
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     See Guckenheimer and Holmes (1983) p. 215.14

(3.41)

(3.42)

(3.43)

(3.44)

with dense orbits if S is irrational" . In our numerical example14

S is an irrational number, hence flows are dense orbits, as can be
easily seen from figures 1 and 2.

Also variables <  and B  can be transformed into a second set of1 1

action angle variables. Set

and 

The second Hamiltonian becomes

and its vector field is
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      is given by the Cartesian15 2

product of two circular phase spaces S  x S . 1 1

     Guckenheimer and Holmes (1983) p. 59.16

     In the two-dimensional example we can set 7=R =8 . The non17 ·
1

degeneracy condition requires that 7'(J)…0. Since, in this case,
R  is a real constant, this condition is violated. (Guckenheimer·

and Holmes, 1983, p.219).

     See Guckenheimer and Holmes (1983), p. 219.18

(3.45)

(3.46)

(3.47)

(3.48)

The complete dynamic system is then reduced to

which, for initial conditions {JE, IE, RE, NE}, has the solution

and, in terms of the original variables

"Thus the four dimensional phase space is filled with two-
dimensional tori , given by J=JE, I=IE and each torus carries15

rational or irrational flows depending on the ratio 8 /8 . In1 2

general, n degree of freedom integrable Hamiltonian systems give
rise to flows on n-dimensional tori" . In our case the j-th vector16

field can be written as

In the two sector case (equation 3.45) the linearized Poincaré map
is degenerated . Hence, the  Kolmogorov-Arnold-Moser theorem ,17 18

which asserts that, if the period of R is a function of J, most of
the closed irrational orbits of the unperturbed Poincaré map are
preserved for sufficiently small perturbations, cannot be applied.
The system is structurally unstable.
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     In this book Goodwin represents the adjustment process of19

prices and quantities by a gradient vector field.

     See, for example, Varian (1984) pp.128-129.20

(4.1)

(4.2)

4. Consumer demand functions.

In this paragraph we will add a slightly non-linear perturbation to
the linear dynamic adjustment model analysed in paragraphs 2 -3. In
the first chapter of Chaotic Economic Dynamics Goodwin assumes that
only wage earners spend for consumption, that wage income is
entirely spent, that the uniform, nominal wage rate w remains
constant during the whole adjustment process , and that consumers19

expenditure is distributed among different goods and services in
fixed proportions. Under these assumptions, the Marshallian demand
function for the j-th consumption good is given by

where q  is the demand of good j, p'  is its price, l' is totald
j j

employment and s   is the proportion of total wage income spent inj

purchasing good j. Of course

As is well known, constant expenditure shares are a feature of
Cobb-Douglas utility functions. Consumer demand functions like 4.1
can be easily derived from a constrained maximum problem (consumers
maximize their current utility under the constraint of a given
nominal income), provided the utility function is Cobb-Douglas .20

On the other hand, demand functions like 4.1 imply that the real
wage income is flexible and inversely related to prices. 

To investigate some of the possible effects of the adoption of
these behavioural hypotheses on the dynamic process analysed in the
previous paragraphs, we will restate them as follows: 

HYPOTHESIS 4.i The nominal wage per unit of uniform labour is
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(4.3)

(4.4)

(4.5)

(4.6)

constant and equal to 1; i.e.

 
HYPOTHESIS 4.ii Current prices are expressed in index numbers,
based at their respective long period equilibrium values; i.e.

HYPOTHESIS 4.iii The wage is entirely spent for consumption in
fixed proportions; i.e.

Finally, we will assume that n=2.

From hypotheses 4.ii and 4.iii we have that s   and (1-s ) represent1 1

equilibrium real consumption per unit of labour, i.e equilibrium
commodity wage. Hence current commodity wage is:
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(4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

Define as y*(p*) the two-dimensional vector of equilibrium final 
demands. We know that

and therefore

 
where a  is the row vector of constant labour inputs coefficients.l

Excess supply is now given by

where l=(l'-l*)=a (q'-q*) is current excess employment,  l

and

The dimension of the phase space is now (2n+1)=5, and the vector
field is now

In symplectic coordinates 4.12 becomes

Although the number of sectors is only two, the number of
parameters involved is relatively high (eight), hence a wide range
of dynamic behaviours and bifurcations becomes possible. This makes
the stability analysis of the flows on the five dimensional phase
space rather difficult. Analysis will therefore be restricted to a
brief discussion of the outcomes of the simple two-sector numerical
example presented in table 1 (Sioux). The phase portait of this
model is given in figure 3. Figures 4, 5 and 6 are the graphs of
B , B , and l', i.e. of the deviations of current prices from their1 2

equilibrium values and of total employment respectively, vs. time.

Since the deviations of current prices from their equilibrium



30

values tend to vanish and the same holds for l, equilibrium is, in
this example, locally asymptotically stable. However, it may be
asked whether the zero solution of this model can be regarded as a
long period equilibrium. Total employment (figure 5) does not tend
to an exogenously given constant level, but to an endogenously
determined value, which depends on both the behavioural hypotheses
on which the model is built and the initial conditions.  This means
that excess gross products q  tend to vanish, i.e that current
gross outputs adjust to their respective equilibrium values which,
however, are not independent of the adjustment process itself.

This result is, of course, a consequence of the assumption of a
linear technology. In a linear production model, long period
equilibrium prices are unequivocally defined once technology and
income distribution are defined. The same holds for the structure
of gross outputs, once technology and the structure of final demand
is given, as is the case in Goodwin's 1990 model. However, the
absolute level of outputs in each sector (the module of the gross
outputs vector) remains indeterminate. Hence, in a dynamic
adjustment model like the one presented in this paragraph, any
level of gross production can be regarded as an equilibrium level,
provided it is stationary.
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(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

5. Further analysis of the dynamics of a two degree of freedom
Hamiltonian.

The aim of this paragraph is only to provide an example of the
interesting potential results which the Hamiltonian approach may
lead to, if the assumptions of real wage flexibility and constant
returns to scale are released. For this purpose, some rather
substantial modifications of Goodwin's basis Hamiltonian model need
to be introduced. Formally, these will take the shape of
modifications of both the non-linear perturbation introduced in
paragaph 4 and the linear unperturbed Hamiltonian analysed in
paragraphs 2 and 3.

Firstly, we will assume that the commodity wage F changes if prices
change, but these changes will not be sufficient to entirely cancel
the initial "degree of disequilibrium" affecting income
distribution. As in the case of prices, the "degree of
disequilibrium" is measured by the length of vector

or, in symplectic coordinates

The perturbation then becomes

where

The two-matrix of right eigenvectors of (I-A) can be written in the
form

Setting
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(5.6)

(5.7)
(5.8)

(5.9)

(5.10)

(5.11)

(5.12)

(5.13)

(5.14)

the perturbed Hamiltonian can now be written as

where

and

From equation 5.1 one can see that the "degree of disequilibrium"
affecting income distribution depends on the deviations of current
prices from their equilibrium values and on the deviations of total
employment from its equilibrium level l*. Since the nominal wage is
constant,

can still be used as a satisfactory measure of excess profits. On
the other hand, excess final goods supply

can still be used as a measure of excess supply. Thus, in
symplectic coordinates, the Hamiltonian vector field can be written
as

Setting l*=1 and ,=1, system 5.13 becomes

      .

Since k   =0, a third conserved quantity has been added to k   and,
1

k . However, integral curves are still flows on a two-dimensional2

manifold. A numerical example of this model (Paiute) is also
presented in table 1; its phase portrait is presented in figure 7.
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(5.15)

(5.16)

(5.17)

Figures 8, 9 and 10 are the graphs of B , B  and l' vs. time.1 2

In order to simplify the discussion of the second substantial
modification of the basis Hamiltonian system, I assume, for the
moment, that ,=0. The hypotheses that the time derivatives of
sectoral outputs are linear increasing functions of sectoral excess
profits and that the time derivatives of prices are linear
increasing functions of sectoral excess demands are now replaced by
the assumptions that:

- the changes of the gross output of each sector depend linearly
and non-linearly on excess profits in all sectors;
- the changes of the price of each product depend linearly on
excess demands in all sectors.

Moreover, as far as gross outputs are concerned, it is assumed
that, if positive (negative) deviations from equilibrium are small,
all factors of production can be used more (less) efficiently;
therefore, returns to scale are increasing (decreasing). However,
if the absolute value of deviations from equilibrium exceed a given
maximum, the absolute values of efficiency increases (decreases)
are progressively reduced to zero. A simple way of stating these
hypotheses is the following:

To minimize the difficulty of analysing the dynamic behaviour of
the nonlinear production model, it is useful to assume also that

and that

Thus, equations 5.15 in symplectic coordinates become:
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(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23.1)
(5.23.2)

(5.24)

(5.25)

(5.26)

(5.27)

A similar set of simplifying assumptions can be made for the time
derivatives of prices. Assume that 

and that

Thus, in symplectic coordinates, system 5.19 becomes

and the unperturbed Hamiltonian vector field is

As in paragraph 2, B  and x  can be transformed to action angle2 2

variables:

hence, the final expression of the unpertrubed Hamiltonian is

If ,…0, the perturbed Hamiltonian becomes:

F(B , x ) is the Hamiltonian of a simple pendulum with energy1 1

In a cylindrical phase space:
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      See appendix 5.A.21

      See Guckenheimer and Holmes, p. 219.22

      See Guckenheimer and Holmes, p. 201.23

(5.28)

(5.29)

(163)

(5.31)

(5.32)

(5.33)

and

B  and x   have two rest points: the origin, which is an elliptic1 1

centre, and {B =-B/B, x =0}, which is a saddle. 1 1

The non-degeneracy condition is satisfied in this case . From KAM21

theory we know that, if , is sufficiently small, the perturbed
(area preserving) Poincaré map has a set of closed curves, of
positive Lebesgue measure, close to the original set, filled with
dense irrational orbits . Since, for B  =±B, x  =0 only if22

1 1

i.e

for F(B , x )=k =2, system 5.23.1 has a pair of homoclinic orbits :1 1
" 23

Assume that the total "degree of disequilibrium" of system 5.26 is
greater than 2. Then

is a positive constant. The results of the foregoing analysis can
then be summarized as follows:

- equation 5.26 is a two degree of freedom Hamiltonian system with
three conserved quantities;
- F has a pair of homoclinic orbits at the energy level k =2;"
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      See Guckenheimer and Holmes, p.252.24

      Guckenheimer and Holmes, p. 252.25

      See appendix 5.B.26

(5.34)

(5.35)

(5.36)

(5.37)(5.38)
(5.39)

- G'(I)=8 >0, and2

- for k  >k , l  is a constant., " "

Let

denote the symplectic form

and define

Then , if Melnikov's function 9(NE) has a simple zero and is24

independent of ,, for , sufficiently small, system 5.26 has
transverse homoclinic orbits on every energy surface k >k . By, "

Smale-Birkhoff homoclinic theorem  this implies that the associated25

Hamiltonian vector field has Smale horseshoes at every "degree of
disequilibrium" greater than two. Using 5.32 and 5.7, Melnikov's
function 5.36 becomes equal to26

where l', p'  and p'  are given by equations 5.9; B  =B  , x =x   and1 2 1 1
E E

Melnikov's function can then be evaluated by the method of
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      See appendix 5.C.27

(5.40)

(5.41)

residues  to yield27

Since 5.40 has a simple zero for

the perturbed Hamiltonian system has Smale horseshoes at every
"degree of disequilibrium" greater than two, for , sufficiently
small.
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(5.A.1)

(5.A.2)

(5.A.3)

(5.A.4)

(5.A.5)

(5.A.6)

(5.A.5)

(5.A.6)

Appendix 5.A

The unperturbed Hamiltonian can be written as

and its vector field is

From 5.28 and 5.29 we know that B  is a periodic function and that1

B  0[-B,B). If we take the restriction E   ={(B ,x ,N,I)0S  x ú  #1 kE 1 1
NE 2 2

I=I  , N=N  0[0,2B]} and linearize the system 5.A.3 at (B  =0, xE E
1 1

=0), we obtain

The roots of 5.A.4 are 

i.e., they are imaginary with 0 real part. Hence (0,0) is an
elliptic centre, sorrounded by closed orbits filled with dense
orbits if 1/8  is irrational. The linear Poincaré map is2

If 5.A.3 is linearized at (B = -B/B, x =0), we obtain

and the roots are now real distinct

Hence (-B,0) is a saddle. Since B   is periodic with period 2B, the1

non-degeneracy condition of the unperturbed Poincaré map can be
checked as follows: set B  =0 x  = x̄  >0; we have1 1 1
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(5.A.7)

(5.A.8)

(5.A.9)

(5.A.10)

(5.A.11)

(5.A.12)

(5.A.13)

hence

and, in general

Therefore we set

and

F(B ,x ) is now equal to (J /2), hence1 1
2

and
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(5.B.1)

(5.B.2)

(5.B.3)

(5.B.4)

(5.B.5)

(5.B.6)

Appendix 5.B

Melnikov's function is

On the homoclinic orbit:

and 

We also have

and

Thus
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(5.C.1)
(5.C.2)
(5.C.3)
(5.C.4)
(5.C.5)

(5.C.6)

(5.C.7)
(5.C.8)
(5.C.9)

(5.C.10)

Appendix 5.C

The evaluation of 9(NE) by the method of residues is rather
laborious. In this appendix I will therefore state only the most
relevant aspects of the procedure. The reader may refer to Smirnov,
vol. 3.II, and to Dieudonné, chapter IX, for a detailed exposition
of the theory of residues and of the theorems mentioned in this
appendix.

9(NE) is a linear combination of six basis integrals:

In expressions 5.C.1, 5.C.3, 5.C.4 and 5.C.5 p'   can be replaced1

by p'  without changing the integral. On the homoclinic orbit,2

total employment and prices are given by

Replace the real variable t with the complex variable s, defined as
follows

thus
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(5.C.11)

(5.C.12)

(5.C.13)
(5.C.14)

(5.C.15)

(5.C.16)

(5.C.17)

(5.C.19)
(5.C.20)

and setting

we have

We can also set

hence

Now, let us analyse the behaviour of the hyperbolic and circular
functions of s in expressions 5.C.1-5.C.9. We have

for n =/(B/2), , =/i:

 
and for n=(B/2),  ,=i: 

         
for n =/(B/2), , =/i: 
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(5.C.21)

(5.C.21)

(5.C.22)

(5.C.23)

(5.C.24)

(5.C.25)

(5.C.26)

(5.C.27)

(5.C.28)

(5.C.29)

For k=0 and  n =0, sinh(0)=0. Hence sinh(s) is a monotonict

increasing function of s. For n=(B/2), ,=i: 
                                   

and 

Set

For  n=/(B/2), ,=/i, we have

Since

we have

where

                                                
Setting k  = 0, R becomes a real one-one function  of s. ForR

n = (B/2), ,=i 

is a complex one-one function, and
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(5.C.30)

(5.C.31)

(5.C.32)

(5.C.33)

(5.C.34)

hence

          
Thus 
          

for n =/(B/2), , =/i

is a real periodic function. For n = (B/2), , = i
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(5.C.35)

(5.C.36)
(5.C.37)

(5.C.38)
(5.C.39)

(5.C.40)

(5.C.41)

(5.C.42)

(5.C.43)

(5.C.44)

thus

which implies that

In a similar way it can be proved that if

i.e., for 

cos(8 s+N) and sin(8  s+N) are periodic functions with unit module.2 2

If 

the modules of cos(8 s+N) and sin(8 s+N) are increasing functions2 2

of t0ú . Expression+

can be set equal to the sum of 

and
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(5.C.45)

(5.C.46)

(5.C.47)

(5.C.48)

(5.C.49)

(5.C.50)

(5.C.51)

(5.C.52)

(5.C.53)

(5.C.54)

For n=o or n=B  5.C.44 becomes

Since

5.C.46 tends uniformly to 0 for t64. For 0<n <B, n=/(B/2), 5.C.44t

becomes

and the foregoing analysis of cosh(s) and sin(8 s+N ) shows that2
E

5.C.48 also tends uniformly to 0 for t64. For n =(B/2), , = i and
n =/(B/2), n =/(3B/2) we havet t

Since
         

5.C.49 also tends uniformly to 0 for t64.

Set

then lim sF(s) = 0, becauset64
         

for any n>0. Moreover, since we have set k  =0, F(s) is analyticQ

everywhere in the upper half-plane, except at the poles

and

The two poles of order three in the upper half-plane are uniquely
determined once k is determined. The corresponding values of the
residues of F(s) are invariant for all values of k0ø ; thus, to+

evaluate the residues, k can safely be set equal to 0. From the
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      See Smirnov, 1982, 3.II, p. 227.28

(5.C.55)

(5.C.56)

(5.C.57)

(5.C.58)

(5.C.59)

theory of residues  we know that 28

where Ea is the sum of the residues of F(s) at the poles in the
upper half-plane. The residues can be evaluated as the limits for
               
n 6 B/2 and n 6 3B/2 oft t

where n  = B/2 and n  = 3B/2. Since these limits are respectively1 2
t t

                          
equal to +4 and -4, their sum is equal to 0. Hence, the principal
value of the integral of 5.C.44 is 0.

In a similar way it can be proved that the principal value of the
integrals of 5.C.45, 5.C.2, 5.C.3, 5.C.4 and 5.C.6 are all equal to
0. In order to evaluate the integral of expression 5.C.5 by the
method of residues, let us again substitute the complex variable s
for the real variable t. We obtain

In this case also:  

                        
everywhere in the upper half-plane except at n=B/2,  where 5.C.57
is equal to
                        

Let us consider the following function:
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      See Smirnov, 1989, 3.II, pp.223-229.29

(5.C.60)

(5.C.61)

(5.C.62)

(5.C.63)

(5.C.64)

(5.C.65)

(5.C.66)

(5.C.67)
(5.C.68)

F (s) is continuous and has continuous first derivatives for all1

values of n0(0,B), except at the poles; moreover

uniformly in the same domain. Hence29

where C  is the semicircle determined by 0#n#B and r=#s#. On ther

real axis F (s) may be written as 1

Since the residues of F(s) in the upper half-plane cancel out, we
must have

Hence

and therefore

Thus, Melnikov's function is reduced to

which has a simple zero for 
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      Goodwin, 1990, p. 1.30

6. Conclusions.

"Why is economics like the weather? Because both are highly
irregular if not chaotic, thus making prediction unreliable or even
impossible."  This statement is probably an effective synthesis of30

Goodwin's views on the dynamics of modern economies. These views,
or perhaps this "philosophy", appear to the interested scholar like
the leading thread of Goodwin's lifelong work on dynamics.

In this paper it has been shown that this "philosophy" is not
incompatible with the usual economic axioms, which state that
agents aim at maximizing either profits, or utility, or both. It
has also been shown that symplectic transformations of coordinates
are an essential tool of analysis when a Hamiltonian adjustment
process is assumed, as is the case of Goodwin's 1953 "Walrasian"
model. Finally, it has been shown that, if real wages are not
entirely flexible and returns to scale are not constant, the
adjusment process can generate very complex, and in extreme cases
chaotic, motions. 
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TABLE 1
Parameters of the two-sector model.

Initial Conditions
Variables                     Models              
    Navajo       Sioux        Paiute    
B                 .12             -.1                .12
B                -.16              .1               -.16
x                -.15              -                -.15
x                 .09              -                 .09
l'                -                .4402             .4402
l'                -               -.001              -
B                 -                .02               -
B                 -               -.03               -



Simultaneous Adjustment of Quantities and Prices:
an Example of Hamiltonian Dynamics.

                         Paola Antonello
Abstract

In a well-known 1953 essay, "Static and Dynamic Linear General
Equilibrium Models", Richard Goodwin analyses the dynamic
adjustment of quantities and prices to long period equilibrium, in
a set of n "Walrasian" markets. He treats the crossed adjustment of
prices and quantities  as a linear Hamiltonian vector field. In
more recent works Goodwin has introduced non-linear perturbations
in his multisectoral adjustment models, by assuming that real
consumption depends non-linearly on relative prices. Goodwin's use
of Hamiltonian dynamics and of symplectic coordinates changes opens
up a wide range of fascinating potential developments for the
analysis of adjustment processes in multisectoral systems subject
to real perturbations. It has, however, not been totally exempted
from objections, usually referring to the lack of microfoundations
of his macro dynamic analysis and to his use of non-Cartesian
coordinate systems in economics.   

The aim of this paper is threefold: i) to investigate whether
Goodwin's behavioural hypotheses are compatible with the assumption
that agents maximize. ii) To show that, if the dynamic process is
Hamiltonian, symplectic coordinates changes are essential tools of
analysis. iii) To analyse the dynamic behaviour of Goodwin's
Hamiltonian model, subject to the non-linear perturbation he
suggests in Chaotic Economic Dynamics (1990), and to point out some
of the developments this approach may lead to. 

Goodwin's 1953 cross-dual model is at first derived from an optimal
control model, the objective functional of which is the aggregate
excess profits function, i.e. the sum of sectoral excess profits.
This model generates simple harmonic motions. In the second part of
the paper, the following assumptions are introduced: a) the nominal
wage is fixed and entirely spent for consumption; b) consumer
utility functions are Cobb-Douglas; c) consumers aim to maximize
their current utility. Under these hypotheses, Goodwin's 1990
consumer demand functions are easily derived. Since prices and the
real wage are flexible, the closed orbits solutions disappear and
long period equilibrium becomes asymptotically stable.

In the last section of the paper, the analysis is restricted to a
two sector model. Goodwin's basis hypotheses are slightly modified.
It is assumed that the unperturbed two degree of freedom
Hamiltonian is non-linear and has a homoclinic orbit. It is further
assumed that the perturbation is itself periodic. The economic
meaning of these assumptions is that returns to scale are not
constant and that real wages are partially rigid. By applying
Melnikov's method, it is then proved that the perturbed Hamiltonian
system has transverse homoclinic orbits and, therefore, Smale



horseshoes. Hence, under the assumptions of variable returns to
scale and of real wage rigidity the model can generate chaotic
transients or pure chaotic motions.
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