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Abstr act

In a well-know essay, first published in 1953, ("Static and Dynam c
Li near General Equilibrium Mdels"), R chard Goodw n anal yses the
dynamic adjustnment of quantities and prices to long period
equilibrium in a set of n "Walrasian" nmarkets. He treats the cross
adj ustment of prices and quantities as a |linear Ham |tonian vector
field. In nore recent works Goodw n has introduced non-Ilinear
perturbations in his nmultisectorial adjustnent nodel. He assunes
t hat real consunption depends non-linearly on relative prices. This
paper shows that: 1) Goodwin's behavioural hypotheses are
conpatible with the assunption that agents maximze; 2) if the
dynam c process is Hamltonian, synplectic coordi nates changes are
essential tools of analysis; 3) if real wage is rigid and returns
to scale are not constant, the Ham ltonian nodel can generate
chaotic transients or, in extreme cases, pure chaotic notions.



1. Introduction

In a pioneering work of 1953 ("Static and Dynam c Linear GCeneral
Equi |l i brium Model s") R chard Goodwi n presents a | eadi ng anal ysi s of
the dynam c adjustnents of quantities and prices to their |ong
period equilibrium values. He takes two different kinds of
adj ust ment processes into consideration: the uncoupl ed adjustnent
of prices and quantities, i.e. a gradient vector field in which
prices react to excess profits per unit of output, and quantities
react to excess demands per wunit of output, and the crossed
adjustnent of prices and quantities, i.e. a Ham|ltonian vector
field in which the time derivative of prices depends on excess
demands per unit of output, and the tine derivative of gross
quantities depends on excess profits per unit of output. In both
cases the properties of the dynam c processes are analysed by
treating the set of intersectoral demand coefficients as a |inear
operator on its generalized ei genspace.

In nore recent works (for exanple "Swi nging al ong the Autostrada:
Cyclical Fluctuations along the Von Neumann Ray", (1989) or in
"Chaotic Economic Dynam cs", (1990)), Richard Goodw n introduces
some el ements of non-linearity in his basis nultisectoral nodel; by
assumng that the wage is fixed in nomnal terns, he lets real
consunption and investnent demand depend non-linearly on relative
prices. Mreover, in "The Dynamics of a Capitalist Econony",
(1987), the linear crossed-dual adjustnment process is represented
by a Ham I tonian vector field in synplectic coordinates. This opens
a W de range of fascinating potential devel opnments for the anal ysis
of adjustnment processes in nultisectoral systens subject to real
perturbations.

This paper has two ains: firstly, it ainms to investigate whether
t he behavi oural hypot heses adopted by Goodwi n are conpatible with
t he assunption that agents nmaxim ze and, if so, what is the nature
of their respective objective functionals. Secondly, it ainms to
anal yse the dynam c behaviour of his 1987 Ham |tonian nodel,
subject to the non-linear perturbation he suggests in "Chaotic
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Economi ¢ Dynam cs", and to point out sone of the fascinating
devel opnments this approach may | ead to.

| n paragraph 2, Goodwi n's 1953 cross-dual nodel is derived from an
opti mal control nodel, the objective functional of which is given
by the aggregate excess profits function, i.e. by the sum of
sectoral excess profits. In paragraph 3, the resulting Ham | tonian
vector field is transforned, by a synplectic change of coordi nates,
into Goodwin's 1987 linear nodel. This nodel generates sinple
harmoni ¢ notions, which are illustrated by a two sector nuneri cal
exanpl e. Hence the |long period equilibriumsolution is stable, but
the nodel is structurally unstable. In order to sinplify the
subsequent analysis of the linear nobdel subject to non-Ilinear
perturbations, a further synplectic transformation to action angle
coordi nates (non-linear polar coordinates) is perforned.

I n paragraph 4, the follow ng assunptions are introduced: a) the
nom nal wage is fixed and entirely spent for consunption; b)
consuner utility functions are Cobb-Douglas; c¢) consuners aimto
maxi m ze their current utility. Under these hypot heses, Goodw n's
1990 consuner demand functions are easily derived. Since prices and
the real wage are flexible, the resulting perturbed Ham |l toni an may
have equilibria which are sinks. Hence, in the nunerical exanple,
the closed orbits solution disappears and the |long period
equi l i brium sol ution becones asynptotically stable.

In the | ast paragraph, the analysis is restricted to a two sector
nodel . Goodwin's basis hypotheses are slightly nodified. It is
assuned that the unperturbed two degree of freedom Ham ltonian is
non-linear and has a honoclinic orbit. It is further assunmed that
the perturbation is itself periodic. By applying Ml nikov's nethod,
it is then proved that the perturbed Ham |tonian system has
transverse honoclinic orbits and, therefore, Smale horseshoes.



2. Goodwin's "Walrasian" nodel as an optinmal control nodel.
Basi ¢ assunpti ons:

a) Technology in the n-sectors econom c system can be represented
as a linear operator in a Euclidean n-space E. The associated
matrix in standard coordinates is A=[a;;], i=1...n, j=1...n.

b) The econom c system as a whol e pursues the aimof maxim zi ng
excess profits inthe time interval ty,-t,, teR, i.e.
where p' (t}eE and g(t)eE are the n-dinmensional vectors of the

¥y i Ht P .otk = ﬁ FéﬂaﬁiWB(brf éspéﬁﬂ)gfo§QQQUhht|t|es from thei (2] opg
perlod equi'l't briumvalues''and E is the dual space of E.

c) Relative prices are flexible and their tine rates of change are
increasing linear functions of sectoral excess demands:

Equations 2.1 @H@:?Xi'fﬁﬁ“égent an exanple of a dynamic cbhit b

probl em where p(t) are the state variables, g(t) are the control
variables, 2.1 is the objective functional and 2.2 are the
equations of notion, i.e. the n-dinensional set of constraints on
t he objective functional.

The Ham I toni an function is

H(t, p,q,8)=8,F(t,p,q)-8(t)(lI-Aq(t)=

“8.p () (1 -A)q(t) -8 (t)(I -A)a(t) (2.3)
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where 8,, 8' (t) are conjugate or costate variables. Necessary
conditions for a maxi num are

0(t) =DgH=-(1 -A)q(t) (2.4)

wher e Dgtg(thh@ptﬂ)!,t:ﬁ(w &8yt (¥ =@i rst derivatives of H Hehd®

. B(t)=-8,(1-A)q(t) _ (2.6)
8 (t) is a scalar multiple of p(t). On the other hand, from
equation 2.5 we have

DqH:80pt(t)(|—A) -8'(t) (I -A) =0 (2.7)
hence

8'(t)=p'(t)8, (2.8)
and, setting 8,=1

Necessary conditi®dd i@ (s that, when the objective functiohdl 9 s
maxi mzed with respect to the control variable g(t), shadow prices
8(t) coincide with excess prices. In this case, Ht) is identically
O at all t, therefore equation 2.6 does not help in determning the
optimal path of q(t).

We shall therefore turn our attention to the transversality
condition. If the planning horizon is unbounded and the right hand
si de boundary is free, we can construct a one-paraneter famly of
adm ssible trajectories of the state variables p(t;R), wth
p(t;0)=p(t,g*(t)) where qg*(t) is an optimum control; the
transversality condition then requires that



wher e Drsp(tlt'id)1 PGt PhBs RdriVat@ve of p(t:R) at p(t,q*(3)10) A

solution to 2,10 is

i.e the transJéH@é?%QRiobéﬁdition is satisfied if |ong (Rellpd
equilibriumis dFBbally asynptotically stable. Since p(t) depends
on q(t), equation (2.10) is in fact a constraint on the dynamc
behavi our of g(t). From equation 2.4 we have

SBttthfOIE:(y(ol =AyE( 9),ds tke dduad) ﬁ)to S0 élssk i nal demand at 2012

have

t{ -

This nmbamd | t BAE) dsomg(! p& i 08Y.edu)librium prices are g(@bah)y
asynptoﬂf%a(iy stable if gross outputs converge asynptotically to
any initial level of gross demand. Long period equilibriumprices
are therefore independent of output or, equivalently, they are not
associated with any particular level of final demand or of
enpl oynent. On the other hand, the assunption that gross outputs
are rapidly adjusted to demand and equation 2.4 necessarily inply
that equation 2.10 (the transversality condition) is verified. W
m ght call this assunption the "Keynesian nultiplier asynptotic
stability assunption".

hence Phé—A@{éUﬂ?Enq(emds e+ dynayi’s =behavi our of q(t) is (2.13)

However, this is not the case in Goodwin's "Walrasian" nodel. In
order to find Goodwin's solution to the optimal control problem
| et us first assune that the planning horizon is bounded, i.e. that

the tinme interval over which the objective functional is to be
maxi m zed ends at t,, which is finite.

Call M the smooth manifold generated by the intersection of s
hypersurfaces S (t,p,q)=0, u=1...s, s>1, M the manifold generated
by equation t-t,=0 and set M= MnM. Then, if {p,q} ends at the
point {t, p(ty.,q(t,)}eM and q(t,) is an optimal control, the
transversality condition requires that vector {p,q} nust be
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orthogonal to M(t,) or, equivalently, normal to any vector in the
tangent hyperplane at {p(t,),q(t,)}. We shall prove that:

1) the transversality condition is satisfiedif M 1is the manifold
generated by the bilinear form

S(t,p,q)=q'(t)MMq(t) +p'(t)MM" p(t)-k=0 (2.15)
where k#0 and Mis a non-singular, block diagonal matrix
_(BY O
w- (39 (2.16

2) If B=(l-A and the tinme behaviour of prices is given by the
equations of notion 2.4, the optimal control is given by

at) =(1 -A")p(t) (2.17)

Pr oof :

Suppose that B=lI. Equation 2.15 then becones

i BndhFda( p Y)Y PRE) ks _
i E?Eﬁliesn:fqi?( t{/)%:b éﬁ(t {B)PhE)céigent hyperpl ane through Fg)

where D> is the-3BcYbian matrix of > at >. The transvef2alPly
condition is

St () =>'(ty) D>;(tl)(>(tl) —;(tl)>:0 (2. 20)



which is always satisfied by any >(t;)eM(t;): Hence, if B=l, an
optimal trajectory which satisfies the transversality condition at
t, is any point {p(t,), q(t,)} which is a solution of 2.18.
Differentiating 2.18 wth respect to tinme we obtain:

I f we set R’—”Ot(itr?@(ﬁe) é%ﬂé“b@été)fcom)ti on 2.4 and substitute E)?t?l}n

2.21, we obtain

hence q'(t)@t)-g'(t)p(t)=0 (2.22)
and q'(t)(@(t)-p(t))=0 (2.23)
Now, assure that B RfU)s becomes (2.24)
() (T-A (T -AY)p(t) + gt (t) (1 -AY) (1 -A)q(t) - (2.25)

Setting ex> =(1-A)p, ex> =(1-A)q and ex>={ex>, ex>}, proposition
(1) can be proved as in the previous case? The transversality
condi tion now becones

t) =P (t,), TH(t,) M D, eX>M(p(t ) -p(t,)), (¢ _ (2. 26)
which is verified by any {p,q}eM Since M D,. (ex>)Mis the inmge
of D,y (P,q) in the space spanned by

1See appendi x 2. A

2See appendi x 2. B.



(1-A%) 0 ) (2.27)
0 (1-A)

2.26 and 2.20 are the sanme equation in different coordinates. The
time derivative of Sis now

wh Eh( ! t6gef he At h+@Ruat) 6h A 4! Arpifés (2.28)

ance,ﬁpﬁé)&ﬁﬁgﬁiﬁqkéhéolGﬁF)Bftkhﬂjoptinal control is gﬁgeﬁg}n

this case by

a(t) =(1 -A')p(t) (2.30)
whi ch proves proposition (2).
W will now rel ease the assunption that the planning horizon is

finite. Qur nodel nerely requires that

lies in a boundedlﬁéﬁi?%ﬁ% M therefore, if lim . >(t) exi68s31jt
is possible to choose >(t) so that 2.31 is orthogonal to Mat the
termnal point. Wien this is done, any necessary conditions at the
term nal point of the trajectory will be satisfied?3.

Consi der the follow ng snooth hypersurfaces

wheb b R=8) 7B At (hirt:(} cAr') PbhdtEnt ) AhaA' (2.32)

3See Hadl ey and Kenp (1971), theorem 4.3.2, p. 246.
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where t >w, ad(twPi @) A 51 i ci ent | y large real nunber.(2TR3]r
i ntersection

M= St
A S (2.34)

is a (2n-1) dinensional snooth manifold* in EE x E x R. Equation
2.32 states that both Iim _p(t) and Iim __qg(t) nust lie in M
i.e. in the manifold generated by St If k#0 is finite, M is
bounded®. From equation 2.4 we know that, since lim _g(t) exists,
lim . p(t) also exists. The intersection of S' and S? is the set of
points {p(t,),q(t,)} which satisfy the bilinear map 2.32 at t=t,,
hence {p(t,), q(t,))}eM and {p(t,),q(t,)} is orthogonal to M (t,).
This holds for any t;, > w, with sufficiently large w, hence |im_,
{p(t),q(t)} is orthogonal to M at the termnal point and the
dynam ¢ behavi our of the optimal control is again given by equation
2. 30.

W may then conclude that Goodwin's "Wilrasian" prices and
gquantities adjustnent equations can be regarded as the solutions to
an optimal control problem with an unbounded pl anning horizon,
provided that the termnal point lies in a bounded snooth manifold
generated by equation 2.32. This equation states that the the sum
of the squared nodules of the two n-vectors p(t)(l1-A) and (I-
A)g(t), which respectively represent excess profits and excess
final demands per unit of output, nust remain constant during the
whol e adj ustnment process; i.e. that all solution curves in the 2n-
Eucl i dean space of excess profits and excess final demands per unit
of output lie on a hypersphere of radius vk, centred at the origin.
In physics, this condition neans that the total energy of the

“E" and E are dual, Euclidean n-spaces and R is the rea
I'ine.

5See appendi x 2. C.



11

systemis conserved®. How shall we interpret this condition in the
context of a nodel ained at representing the process by which a set
of n "Walrasian" markets reacts to disequilibriunf

W know that the necessary conditions for a nmaxinmm of the
obj ective functi onal

where p', (@ Rrd! 4849 hnd equilibrium relative (Brdeks
respectively, and q', g* are actual and equilibriumgross products
respectively, require that

i .e. that sBebuPol) oRs (dDePedddl to current nmarket prices(?i86)

the objective funcHiohal is equal to 0. However the tEfnbAll
condition requires that

and t he(Prarsvél s& {1 yAcdhdi tPon -K#0 (2.38)

tells us that QfJeQnT(iltT'%t'E) RAi 1)1 change as |long as p' #p*. Heﬁge:ag}m
term nal condition excludes both the possibility that prices and
guantities converge asynptotically to their long period val ues, and
the possibility that prices and quantities increase or decrease
infinitely.

In standard Cartesian coordinates the origin of axes represents
| ong period equilibrium Hence vk - the distance fromthe origin of
vector {(I-Aqg, (I-A )p} - can be interpreted as a neasure of the
"degree of disequilibrium which exists in the economc system It
t hen becones evident that the termnal condition 2.15, by keeping

6See Hirsch and Smale (1974), p. 292.
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t he exi sting degree of disequilibriumconstant, serves the purpose
of assuring that the nodel is globally stable, although it is not
gl obally asynptotically stable’. W mght then call the term nal
condition 2.15 "Goodwin's Walrasian stability assunption”. On the
ot her hand, as we shall soon see, Goodwin's Ham | tonian nodel is
structural ly unstabl e8.

'cF course, this condition constrains the dynam c behavi our
of the nodel rather arbitrarily. |I leave it to the reader to
deci de whether it is nore or less legitimate than the previously
menti oned "Keynesian nmultiplier stability assunption” or the
| ocal asynptotic stability assunption, which is a conmon feature
of a large part of the recent newclassical literature on
econom c gromh. On this point see, for exanple, Serena Sordi
(1990) .

8 .e., the unperturbed and the perturbed vector fields are
not topol ogically equival ent. See Guckenhei nmer and Hol nes (1990),
p. 39.
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Appendi x 2. B

Set
ex>, p)
> = - M
Then ex [9X>2) (q

sHex>, ex>) = Z(eX>1.)2 zn: (ex>,)% -k
=1

wherg! (1 -A) (PXA{ 1),53 59 (/ —At)("ﬁXR)Lg“—:E_:_On
- *ex>l *ex>2j
*ox> >
fﬂxll]jzz...n :lez—&]j:z..n
*@3@15 : @3@%1 :
|j=1...n| = - L]j=1...n
an *ex>2j ex>,,

O e - (8532
The ,gag?\(/?ﬂ al i n%: coenxd>|1 i on ‘%%He beébmes
({RE)- - (8X3)! D, &> (ex>-ex3) - [p(l
(e, of >,
(ﬁlj (?~ail'j‘}51jzt %i.g?:! j=1...n)
i= =1

(2.

(2.

(2.
(2.
(2.

(2.
(2.

o

15

1)

.2)

. 3)
. 4)

. 5)

. 8)
. 9)



we have

wher e
Dex>ex>:

and

1

0 _7{_&—1)(' Ay 40 _At)}‘

eX>ll

oy 1 (1-A) (n-1y =( eXTazny - ex>, )

16

(2.B. 10)
(2.B.11)



hence D,,-ex>(ex>-ex>) =

~ L
) p( n-1) H&W
eX>,7€X>,

-ex>
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Appendi x 2. C

Equation 2.32 can be refornulated as foll ows

2n
where Kk is Saﬂy i1 (legal yxgnstant  #0. If ex>=0, j=fp.ci1},
i+l...2n, 2.C H § (t hat') J ¢ }

Since this holds f&amgvK=1...2n, +vk, -vk are the upper and- Codkr
bounds of each ex>(t)eex>(t). Hence ex>(t) is bounded. But

hence M is bounded >(t) eM (2.C3)
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3. A synplectic change of coordi nates.

Let us call ex g the i-th element of vector (I-A)q, equal to the
excess demand of the i-th coomodity, and ex p; the i-th el enent of
vector (I-A)p, equal to the excess profit of the i-th sector.
Ham lton's equations 2.4 and 2.30 can be witten as

f
6 { (1-AYp

0 -l
= 3.2
DEFINITION  3.1: ) (A @l-noni cal or synplectic  coor dl( nat%es
transformation of 3.1 is a transformation O0=f(>), where
f: R x R - R" x R is snooth, which satisfies the foll ow ng
condi ti ons:

-] (eXp) “Jex> (3.1)

a) if >(t) is the solution of Hamlton's equations 3.1.,
O(t)=f(>(t)) is the solution of equations

*Oi
Wj@b@c?f';@h@gdexiks( &9 JarQD P Ofkfe@PCesf; 1 s the transpopg, pf1fd

b) if and only if QQ=J, the equations for O will be Ham | tonian
with energy®

In order to Sq('ﬁﬁq)fv((a%)iﬁfr%)ﬁq),) | et us make the follow ng (3.1.2)
HYPOTHESI S 3.i : (1-A) has n distinct real eigenvalues 8, ,...,8,

AN

°See Abraham and Marsden (1987) pp. XXI, XX I.
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Call 8 the diagonal matrix of the eigenvalues of (1-A) and X the
matri x of the eigenvectors belonging to them Then we have

Ve shal | ¥k bv® XnhtB1h6 D Ghsfd) ¥at i on (3.3)
i sy &érti cO{fBsfpPration, i.e. it satisfies conditi d
Ib}@?{)efd,ni tli 94) (lez.flxcr}smlji ti oln b) Ican be Ieasli ly cheék(le((J?,nSsfl%i'cgj1
COnolitt:[()%%;))t isO)saQi Sf)fdxi]fo ]:[0 —I]:J (3.5)
0 AW 0 0 Xt | 0
From 3.0-GR-@LVe,. k(ex>) =J V_, h(ex0) (3.6)
Setting exOQVQ1Q>[8 ?](B] [?B] (3.7)
0 8J\X 8x

from Eondi ti léﬁeéf)@g(ﬁé\?&exo))

:3( ex>) t(ex>) :3( ex>(ex0))'(ex>(ex0))

Since the (@fTme¥aLrbfXVx$eXQ trasformed contravariant! 3 Phe

(3. 8)

scal ar pr oduct k(ex>) is invariant to the coordinates
transformation 3.7 only if the row vector ex> is transforned
covariantly® i.e. iftl

_ -1
Thus equat i on (8)pecdfs) 'Q (3.10)

10See, for exanple, Eisele and Mason (1970), part 11.

nij.e. (ex>)! = (ex0)' Q
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arrg(ex0)) =(ex>(ex0))'(ex>(ex0)) =(ex0) ' QQ*( (3.11)

Sgbsti Lyt BQO%Q[ Ekcewn( gx@h) i}tnzéq”@téé’ﬁb)?‘f 6 we obtain (3.12)
ex0 *ax

HIAER =R, £ ecfallt ( &1 il h =FRE( 8%Q) Jnpi ecti ¢ coor di nat £s. 956
QQ'ex0-QIQ"' V_ k(ex>(ex0)) =Jex0 '

as in Goodwin and PBriz8%(1987), pp. 79-82.

(3.14)
Al ternatively, condix?_i%l?q a) can be proved as follows: set
Fr om P-Q V_ _k(ex>) (3.16)
we have ex0 = Qex> (3.17)
. _ *0, *(gx‘(;)%r e
Si nce =J and—-3-9 i<f Qed, we have
QaqQ 3955 Qe (3.18)
and *k(ex>) _ *k(ex>(ex0)) . *ex0 (3.19)
*ex> *ex0 *ex> t
_ | *k(ex>) (ex0)) *ex0| _
Herree: T8 Bldnes *ex0 | ex> (3. 20)

*ex0 |
= - Vaok( €Xx>(ex0)) =Q' V. h(ex0)
| nt elra‘?x%)‘ﬂ;\@gcéﬂ gy 3flem M @O Can be easily found : takiBg2the

time derivative of the first equation of 3.14 and substituting ®
fromthe second equation we obtain a systemof n second order
linear differential equations
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whi ch, under hypotﬁés@§53.i, has only imaginary roots wi (B 28} o
real parts

_ Q2 _ H
W -+/-8 - i g (3.23)

By Euler's formula

hence, ine_§§Hp1é@ﬁi&ﬂicbdréiﬁaﬁés, all integral curves (d 2bhe
Ham I tonian system 3.1 lie on a manifold given by the Cartesian
product of n circles of radius 1. In Goodwin's own words: "The
nmotion is dynamcally stable, in the sense of bounded, but is not
asynptotically stable towards equilibrium It is structurally
unstable (...) so that a slight error in, or perturbance of, the
paranmeters would |l ead either to the di sappearance of the cycle or
to its explosion without limt." Figure 1 is the phase portrait
of a nunerical exanple of system 3.14 (Navajo), in the case where
n=2. Figure 2 is the graph of B vs. tinme. The paraneters and the
initial conditions of this sinple twd-sector systemare given in
table 1. This nunerical exanple provides the foundations on which
the nmore conplex exanples of the follow ng paragraphs wll be
built.

In order to have a greater insight into the dynam c behavi our of
the vector field 3.1 and to sinplify the analysis of the perturbed
Ham | toni an, which will be introduced in the next paragraph, it is
useful to performa further, synplectic change of coordi nates. For
the nmonent, we will go on assum ng that n=2; equations 3.14 can
then be witten as

B, =-8,X, (3.26.1)
0, =8B, (3.26.2)

2Goodwi n and Punzo, (1987), p. 73.
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B, = _82X2 (3 26. 3)
and equation 3.22 éaﬁzgeﬁwwitten as (3.26.4)

B = -8B, (3.27.1)

oo
Equations 3. 26 an® 3. 2%Brake clear that vector field 3.3 84n2be
di vided into two uncoupl ed Ham | t oni ans:

1
k= (82B2+82x 2 (3.28.1)
. 1 . .
Setting k-2 (828t 8ix%) (3.28.2)
we have V. = B (3.29.2)
k. = 1 2p2 2
1~ (8181 +v,) (3.30.1)

In this case itkjsZp8sB3hig to further transformthe |ipgagongn-
ort hogonal coor i rfates o system 3.14 into non-linear polar
coordi nates (action angle coordi dates®®). Set

13See G@uckenhei ner and Hol nes (1983), pp.212-215.
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hence 21 .
B, = '?ZsmN (3.31)

The Hani | t oni alY;becaffé$d, cosN (3.32)
8282+V2
hence  y_g +%:k(l /N, B,, V) (3.33)
. 8282
Se“'”gl—i[k (kN B v (3.34)
8, 2 dB 1
the reduced Ham | tbnldahh sustem becones:
V/_dL 2 (3. 35)

Si nce k does not dBQeﬁ(ﬁLle@I icitly on N, the reduced system3.36 is
aut ononmous. The | i peari® @Q@l Poi ncar é rrap can thus be easily o?t ai ned

by sol ving system 3/3’6I b@%ed at {(,, B;}. The general solu PoR0) s
1 82

where S= (§(ﬁ)) —B° 3(:6%7SN$ 28 sparegdic in N. Thus the linearized

Poi ncar é nép 8, (3.37)

v,(N) ——B° ,8,8in SN+<°, cos SN
Pe, = (3.38)
H8,SFM2BS 2BS +icos @BXBS (3.39)

By applying De Mivre's theoremwe obtain the solution for B,

whi ch is per iBo&lté:\%on%CB%?PSH_fés. Thus the | ong period equi(?’bflphm

solution {0,0} is "an elliptic centre surrounded by a famly of
closed curves filled with periodic points if S is rational, and

Its eigen %@@Bgre agai n8_cgrrp.I2@g fpl)ugate with unit nodul es

Vi
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with dense orbits if Sis irrational"' In our nunerical exanple
Sis an irrational nunber, hence flows are dense orbits, as can be
easily seen fromfigures 1 and 2.

Al so variables <, and B, can be transforned into a second set of
action angle variables. Set

and B, = E sinR (3.41)
The second HaniViORIZA®, kD ifes (3.42)
and its vector fiel 7% (3.43)
9K
e (3. 44)
R=—_1t-=
*.J 1

“See G@uckenhei ner and Hol nes (1983) p. 215.
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The conpl ete dynam c systemis then reduced to

which, for inf19:d =8onfHPi dNs8a°, 1°, R°, N°}, has the sol(@i4®
and, in ternBQ%fgigﬁ 3549¢Q%G1$%&h$ples (3. 46)
a(ﬁmej L Zhe i BO@?II %gécryelngéﬁr} Maégs (sgatceR is filled with two-

upnﬁ and each torus carries
rati omal— or |rrat|onal flo r—dependlng on the ratio 8,(8,47)n

12 n;de fy freedom j2ht egra mltonian systems give
r%;e {o8f | ows on? n dlnenélonak Bori"®." T our case the j-th vector
field can be witten as

In the two se Pp cqe (@q tijgn 3.45) the linearized P0|nc§§ gfp
is degenerategy’| "Hence,y [thg | Kol nogorov- Arnol d- Moser ré
whi ch asserts\that, ifl!the perifod of Ris a function of J, nost of
the closed irrational orbits of the unperturbed Poincaré map are

preserved for sufficiently small perturbations, cannot be appli ed.
The systemis structurally unstable.

15 2is given by the Cartesian

product of two circul ar phase spaces St x S

*Quckenhei mer and Hol nes (1983) p. 59.

YI'n the two-di nensional exanple we can set 7=R =8,. The non
degeneracy condition requires that 7' (J)#0. Since, in this case,
R is a real constant, this condition is violated. (GQuckenhei ner
and Hol mes, 1983, p.219).

8See @uckenhei ner and Hol nes (1983), p. 219.
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4. Consuner denmand functions.

In this paragraph we will add a slightly non-linear perturbation to
the linear dynam c adjustnent nodel analysed in paragraphs 2 -3. In
the first chapter of Chaotic Econom ¢ Dynam cs Goodw n assunes t hat
only wage earners spend for consunption, that wage incone is
entirely spent, that the uniform nomnal wage rate w remains
constant during the whol e adj ustnment process'®, and that consuners
expenditure is distributed anong different goods and services in
fixed proportions. Under these assunptions, the Marshallian demand
function for the j-th consunption good is given by

where q¢ is the(peqaﬂdlpf/good j, p'; is its price, I' is &oifl
enpl oynent and s; is thq proportion of total wage incone spgnt n
pur chasi ng good j. O course

As is well knomm,Egﬁ%BféHt expenditure shares are a f eat (e 2bf
Cobb-Dougl as utility functions. Consunmer demand functions like 4.1
can be easily derived froma constrai ned maxi mum probl em (consuners
maxi mze their current utility under the constraint of a given
nom nal incone), provided the utility function is Cobb-Dougl as?.
On the other hand, demand functions like 4.1 inply that the real
wage incone is flexible and inversely related to prices.

To investigate sone of the possible effects of the adoption of
t hese behavi oural hypot heses on the dynam c process analysed in the
previ ous paragraphs, we will restate themas foll ows:

HYPOTHESI S 4.1 The nom nal wage per unit of uniform |abour is

¥I'n this book Goodwi n represents the adjustnent process of
prices and quantities by a gradient vector field.

205ee, for exanple, Varian (1984) pp.128-129.
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constant and equal to 1; i.e.

HYPOTHESI S 4.1 cuﬂ?éh? prices are expressed in index nuﬁﬁe?%,

based at their respective |long period equilibriumvalues; i.e.
HYPOTHESI S 4.iii Rhe Radge is entirely spent for consunpti(dn4in
fixed proportions; i.e.

Finally, we will Msufe Shat n=2. (4.5)
From hypot heses 4.ii and 4.iii we have that s; and (1l-s;) represent
equi l i briumreal consunption per unit of |abour, i.e equilibrium

commodity wage. Hence current commodity wage is:

Sy
F 1+p
F(l] ! (4. 6)
1-s,
1+p,
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Define as y*(p*) the two-di nensional vector of equilibriumfinal
demands. We know t hat

and therefored” = (1 -A-sa)ly” (4.7)

where a is the rol véc®d? of constant |abour inputs coefficfén8.
Excess supply is now given by

whbr® p=fl tgh ) =d (8 9gk§! iR) 5l e R édess enpl oynent , (4.9)

and p - Di ag(p) (4.10)

The di mension ¢f ghe pBasec‘ space is now (2n+l1l)=5, and the(xeﬂ?r
field is now ! ' 1+p, '

0- (1-A)p
In sympPectllc-Adbtldi Indh)es -k ho! vBLoses (4.12)
0-a - a (1 -AY)p

Although the nunb& =8B sectors is only two, the nunber of
p& aneBers X hvdivag( X Bylel'ati v Yi laigg X 'Bilght ), hence a wi dgﬂgg e
of dynam c behe[qurag(andBp] fig cati ons becones possi bl e. Thi g
the stability j@nal (?/ﬁfJS)( @t tigpflows on the five dinensional phase
space rather difficult AnaIyS|s will therefore be restricted to a
brief discussion of the outcones of the sinple two-sector nunerical
exanple presented in table 1 (Sioux). The phase portait of this
model is given in figure 3. Figures 4, 5 and 6 are the graphs of
B,, B,, and I', i.e. of the deviations of current prices fromtheir
equi libriumval ues and of total enploynent respectively, vs. tine.

Since the deviations of current prices from their equilibrium
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val ues tend to vani sh and the sane holds for |, equilibriumis, in
this exanple, locally asynptotically stable. However, it may be
asked whet her the zero solution of this nodel can be regarded as a
| ong period equilibrium Total enploynent (figure 5) does not tend
to an exogenously given constant level, but to an endogenously
determ ned val ue, whi ch depends on both the behavi oural hypot heses
on which the nodel is built and the initial conditions. This nmeans
t hat excess gross products g tend to vanish, i.e that current
gross outputs adjust to their respective equilibriumval ues which,
however, are not independent of the adjustnent process itself.

This result is, of course, a consequence of the assunption of a
| inear technology. In a linear production nodel, |ong period
equi librium prices are unequivocally defined once technol ogy and
inconme distribution are defined. The sanme holds for the structure
of gross outputs, once technology and the structure of final demand
is given, as is the case in Goodwin's 1990 nodel. However, the
absolute I evel of outputs in each sector (the nodul e of the gross
outputs vector) remains indetermnate. Hence, in a dynamc
adj ustnment nodel |ike the one presented in this paragraph, any
| evel of gross production can be regarded as an equilibriumlevel,
provided it is stationary.
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5. Further analysis of the dynamcs of a two degree of freedom
Ham | t oni an.

The aim of this paragraph is only to provide an exanple of the
interesting potential results which the Ham | tonian approach may
lead to, if the assunptions of real wage flexibility and constant
returns to scale are released. For this purpose, sone rather
substantial nodifications of Goodwi n's basis Ham | toni an nodel need
to be introduced. Formally, these wll take the shape of
nodi fications of both the non-linear perturbation introduced in
paragaph 4 and the linear unperturbed Ham ltonian analysed in
paragraphs 2 and 3.

Firstly, we will assune that the commobdity wage F changes if prices
change, but these changes will not be sufficient to entirely cancel
the initial "degree of di sequi |l i briunt affecting incone
distribution. As in the <case of prices, the "degree of
di sequilibriunt is nmeasured by the |l ength of vector

or, in $ynpflectié (do@daihdt ! +P) s (5.1)
TheDhap( o BAl i il aoord [ +Di ag(X'B) ] (5.2)
Whle&e%Ft[l “Di ag(BX) X' - X!][I X Di ag(BX) -I X] (5.3)

The two-matrix of ri%ﬁggﬁigenvectors of (I-A) can be witten ﬁﬁ'ﬁhe
form

i 1 b
Setting X [b 11 (5.5)



32

the perturbed Hafvid tsﬁ%ilé’ﬁzzﬁan now be witten as

b:sl(l -s,) (b,,+b,,) (5. 6)
ko- 218 08 (e ey
wher e
| 2h _1.[1%/a 14c
{ _va
9 2h[[ apelthw[ P, ] {E Q
cal ettt -k +gk 1
and b1 P2 pl/: 1%1+B2218p1p2

p, = 1+b,,B,+B, (5:9)

From equation 5.1 !onei%&h see that the "degree of disequil{Brifh
affecting income distribution depends on the deviations of current
prices fromtheir equilibriumvalues and on the deviations of total
enpl oynment fromits equilibriumlevel |*. Since the nomnal wage is
const ant,

can still be use@pé@)a(éaﬁ)sfact ory nmeasure of excess proff'f_’s.llbn
t he ot her hand, excess final goods supply

can still be Lﬁée‘d\)(a%/‘%*) measure of excess supply. Tl‘ﬁf‘_%',lz} n
synpl ectic coordinates, the Ham|ltonian vector field can be witten
as

SetB T MG« kT GNP 821X) s‘9¥ta>e>mk51.( 2% BeB¥n®s
0=V_ k°(ex B, ex x) +gV_  k'(ex B, ex x) (5.13)

Since B = ‘SX+?371t'HFtI%FE}5ﬂ§ieﬁl®(e@0qda>ﬁtEty has been added to k, and
Qgg—jq\/\@\ﬂetrx'&“m%g{(g{ B:)un]ygn]pta ;)%‘d(téX)“IQV‘B on a two-di nepsi oapl

mani f ol d nume hi's nodel (Paiute) is also
presented in table h “itls" phase portrait is presented in figure 7.
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Figures 8, 9 and 10 are the graphs of B;,, B, and |I' vs. tine.

In order to sinplify the discussion of the second substantial
modi fication of the basis Ham|tonian system | assunme, for the
monment, that ,=0. The hypotheses that the tinme derivatives of
sectoral outputs are linear increasing functions of sectoral excess
profits and that the tinme derivatives of prices are I|inear
i ncreasing functions of sectoral excess demands are now repl aced by
the assunptions that:

- the changes of the gross output of each sector depend linearly
and non-linearly on excess profits in all sectors;

- the changes of the price of each product depend linearly on
excess demands in all sectors.

Moreover, as far as gross outputs are concerned, it is assuned
that, if positive (negative) deviations fromequilibriumare small,
all factors of production can be used nore (less) efficiently;
therefore, returns to scale are increasing (decreasing). However,
if the absol ute value of deviations fromequilibriumexceed a given
maxi mum the absolute values of efficiency increases (decreases)
are progressively reduced to zero. A sinple way of stating these
hypot heses is the fol |l ow ng:

9,
9,

Dll sin fl( pl’ p2) +DlZf 2( pl’ p2)

. 5.15
D,, sinf (p;,p,) *D,f (P, P,) ( )

To mnimze the difficulty of analysing the dynam c behavi our of

t he nonlinear production nodel, it is useful to assune also that
D D

and t hat - 11 12| Xt (5.16)
D21 D22

Thus, equations Jfﬁ’Pﬁ)§gﬁ?lectic coor di nat es becone: (5.17)
f,(py. Py) = 8,B,
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ﬁ\ef:\r/nalt ?L } 919.} lell)fyl p%:dés:b%? tions can be made for tpg Ebfm

and t hat 0 =L,0,(9;,09) +L,0,(0; 0,)
= (5.19)
L,,9,(0,, ay) + L,,9,(0,,0,)

é[‘ q] (5.20)
Thus, in synple F@l c%’g i ?'?at es, system 5.19 becones (5.21)
9,(0,, 9,) =
B, Syt 1 %1 !
and Bf u:n;ﬁéﬂ'thrpbéd‘% | gzr;iz n- e_cézg(r2 fieldis (5.22)

23.1
gﬁ&f’%z can be transforned to actkgnzgngi

1l UH” I

B,
As in paragraph 25@4
vari abl es: X,

hence, the fi n@ ex r2e$S|SPH ﬁf t he unpertrubed Ham Itonian is
(5.24)

Iﬁ(o,ioxlthe(?e tqgr%e)d/ F(%? Bgn Qecoraf?) (5. 25)

F(B,, K%,7 F6Brre) Harff 'oni 8K "6BraXsiNmle pendul um wi th enerG§- 26)

In a cylindricalkphia§éBspade: (5.27)
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and F(B,, X,): SI1xR-R (5.28)

B, and x,; have #ﬂoeﬂég% 5%ints: the origin, which is an e(ﬁi%g}c
centre, and {B;,=-B=B, x,=0}, which is a saddle.

The non-degeneracy condition is satisfied in this case?. From KAM
theory we know that, if , is sufficiently small, the perturbed
(area preserving) Poincaré map has a set of closed curves, of
positive Lebesgue neasure, close to the original set, filled with
dense irrational orbits?. Since, for B, =B, x;, =0 only if

X}
2
for F(B, x,)=kz2 tsyaflemB) 2301 has a pair of homoclinic ofBi 8d%:

Assﬁﬁ%’?%éi{$t%9ﬁ%ﬁ%ﬂ($H%B§EE)OF %?%%ﬁ{ﬁ)% briunt of systen1§52%2}s

greater than 2. Then

=k"-2 =0 (163)

is a positive @dpkYakt) Jhé_KQSUHDS of the foregoing anal yggsagan
then be sunmarized as fol | 8ns:

- equation 5.26 is a two degree of freedom Ham | tonian systemw th
t hree conserved quantities;
- F has a pair of honoclinic orbits at the energy |evel k'=2;

21 See appendi x 5. A
22 See Quckenhei ner and Hol nes, p. 219.

2 See Quckenhei ner and Hol nes, p. 201.
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- G (lI)=8,>0, and

- for k- >k, " is a constant.
Let
denote the sympl &tk ¢ (Horin (5.34)

and deffi(fs, x°), K1(B®, x°, (8,t +N°), 1 )} =

*F o o*kt *F k! (5.35)
Then?4, jf %ﬁﬁ{o&hsklﬁdﬁ’cﬂ'\i gﬁ“ 9(N°) has a sinple zero (&n@6)s
i ndependent of ,, for , sufficiently small, system 5.26 has

transverse honoclinic orbits on every energy surface k->k". By
Smal e- Bi rkhof f honoclinic theorent this inplies that the associ at ed
Ham | t oni an vector field has Snal e horseshoes at every "degree of
di sequilibrium greater than two. Using 5.32 and 5.7, Ml nikov's
function 5.36 becones equal to?%

wher 9(N?) p‘lfé*ﬂ'ai B 2are Byt bybations 5.9; B, =B° , x,=x" and
ial/ cl/ _ bl' 1*(ath) _ 1 °(c+b)

plzel / , +l\Pl— si n V\} 4
Nn?%{w ZTI%m)B& af’?@tss’; CF B, pred by the )

| *(a+b) -l A

P P

24 See Quckenhei ner and Hol nes, p.252.
% @uckenhei ner and Hol nes, p. 252.

26 See appendi x 5. B.
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residues? to yield

Si nce 5. 20Mist4ag| mple Zeno FHNT) -

.j( 1+Tsi nN°) 2+( 1+b,, Tsi nN°) (5. 40)
the pert rbbTsiam ) fOhBRPEYRN DM jhas Smal e horseshoes at _eyery
"degree (L)lf sté%ru‘F‘F?%“lvml‘?g? ater than two, for |, suffiE?e%ﬂy

smal | .

2 See appendi x 5.C.
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Appendi x 5. A

The unperturbed Ham | tonian can be witten as

and its vectof (BueXd i*s8.! =k~ (5.A1)

=0

: . . 5. A
From 5. 28 and g5. 298_\%:4@)”4\; B, is a periodic function Grd’™ ikt
B, €[-B,B). If'we Nake tdge rleszriction E.N ={(By, x, N, 1)eS? x R? |
=1, N=N eLO, 3B]} apd linearize the system 5. A 3 at (If$15-:"e9,3)x1

_ . _ l .
=0), we obtain= N g sin B,(N)
The roots of 5. A d4jaye 1
B’ 8, B
2| = - (5. A 4)
My f2 73:— 3 (5. A5

i.e., they are imaginary with O real part. Hence (0,0) is an
elliptic centre, sorrounded by closed orbits filled with dense
orbits if 1/8, is irrational. The linear Poincaré map is

x =0), we obtain

If 5.A 3 isc(bgr)zega.gi_zedgzatsithsg
2 ] (5. A 6)

o 2
P =
kO
and the r o{§1= ie mﬂvir-e&i snli2§t'1

w..

(@]
N

B/ 8, 8 B 8

2~/ © 2 LJ ; (5. A 5)
Hence (-B,0) i\& addkex i & B, is periodic with period(g_BA_ge
non- degener acy copdi i on8pf the unperturbed Poincaré map can be
checked as follows: set B, =0 x; = Xx; >0; we have



X2 .
hence k(g x,|B,-0 X, Xy) ===k >0

and, in general X, =y2k"

Theref ore we| o6f X7
"2 4+1- cos B -
[ 2 1] 2

and J =X

F(By, X;) is now eqydf-2e2(cB8B, hence

and $-0
B,=7(J) =J

7/(3) =150
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(5.A.7)

(5. A 8)

(5. A 9)

(5. A 10)

(5. A 11)

(5. A 12)

(5. A 13)
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Mel ni kov's function is

O(N°) =[~{F, k1 (8t+N)dt
On the honoclinic orbit:

*
and%:si nB, =sin(tx2arctan (sinh (t)) =

1
(2 arctan (sinh (t)))
Ve al so have— =x, =+ 2 sech (t)

Xl
*kl *kl *|/
*x, A %,
~ |/ |/ |/ I “(a+b) | *(c+b)
S /2a+ /2C+ / /b_ / - /
pPT P, PP, Py P>
and
Thus  *k _ [kt *P{ s *Py |
*B, lpl *B, *p; *B,
SI ar n SI nh t T
f NY. b)L/f a()z ¢t gn(fsi nh( M{f‘ b
‘ / . p
a1+ I—/zc = / (a+B)2— I (C/+b) Yosec
P, PP, pl Py
' | b\l Pl (asb)
(a+b) - a+? +b,— (a+b) -
2

40

(5.B. 1)

(5.B.2)

(5.B.3)

(5. B. 4)

(5. B. 5)

(5. B. 6)
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Appendi x 5.C

The evaluation of 9(N°) by the nmethod of residues is rather
| aborious. In this appendix | will therefore state only the nopst
rel evant aspects of the procedure. The reader may refer to Smrnov,
vol. 3.11, and to D eudonné, chapter |IX for a detailed exposition
of the theory of residues and of the theorens nentioned in this
appendi Xx.

9(N°) is a linear conbination of six basis integrals:

sin(2 arctan (sinh(t))) I; (5.C. 1)
. 2 . h /
R RN (223
sech (t) P1 (5. C. 4)
sech (t)é%; (5.C. 5)
1

I n expressions & ,t)5.d.§ 5.C.4 and 5.C.5 p'; can be ggpk@gfd
by p', wthout changingpﬁbé integral. On the honoclini orbi
total enploynent and pricés are given by

| /=[1 *+", 2 sech(t) +", T. cos (8,t +N)] (5.C.7)

\ | . .
), =[1+2 arctan (sinh(t)) +b,, T sin(8,t)+N)] (5.C. 8)

Repl 4c¢€Puh@1&EAN & idbI(d)Y i TrSk R %ﬁmﬂ Nx variable s, defPn€d9hs

foll ows

s=tel” t ,R 0<nc<B (5. C. 10)

+

t hus
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and setting %ze”‘ ; dt=ds e " (5.C 11)
we have 9 =e'"=cosn~+isinn (5.C. 12)

dt =ds gt (5. C. 13)
Ve can al so set s =gt (5.C 14)

he?l({}EJerB; O<n <2B; k=0, %1, %2, .. (5.C. 15)

t

Now, |et us andl y:sgsntt Hezﬁg%gvi our of the hyperbolic and( @i Ccbfhr
functions of s in expressions 5.C 1-5.C. 9. W have

2e’ 1 B
] = cosh™(s) =

sech (s) =

2 egnt +e g2kB (5 C. 17)
- GZQnteg4kB+1
for n £(B/2), , Fi:
i mcosh(s) =0
and for n=(B/2), ,=i: o
im coshi(s) =1lim cos?*(n) = _2 L

-2 o2 s s (H)7L (5. C. 19)
f,tqr%sn F(B/2), sihl fs) = > (5. C. 20)



For k=0 and Iils[g&i m%(i%h?‘)@)zo. Hence sinh(s)

i ncreasing funcf hpsy @h($) Fok n=(B/2), ,=i:

K= oo

o 21 (n2kB) 4 1
a%'dnh(s) = oo (2D =isin(n) = -l n(n,)
limisin(n) =i

B
Iirﬁlsin(nt) -
3B
Set N

For nk(B/ 272" SAan(Rd Wiigd) = 2R

oR - il ni -si nh(gt)

we have’ 1-si nh(gt) | - J-1+si nh?(gt) 1
1+si nh( gt) \/—1+Si nh2( gt)

where og -1 | nd -Sinh(gt) | _ ok B
iarg[ N osinh(gt)y )~ TRTNR

Setting IQRS =nRO,32E; beléarr:eg’ §1r Egr "one-one function

= (Bl2), ,=i

is a coml é)g nolne 3hal Pl?ncilbp o M0

i +isin(n,) i 1+sinn,

is

of

a

S.

(5.
(5.

(5.

(5.

(5.

(5.

C. 22)
C. 23)

C. 24)

C. 25)

C. 26)

C. 27)

(BoC: 28)

(5.

C. 29)



1, 1l-sinn,

[im=IlnN——m—— = -x
hence LB 1+S|nq
"7
1-sinn
| i hatdtaR) =t +o
.. 3B I 1+s nn,

t?arctan(—»i) =
Thus

sin(2 arctan(sinh(s))) =sin(2R)
for n £(B/2), , Fi

is a real perﬂ)ang? und i Nmbor n = (B/ 2),

(5
(5

(5

(5

(5
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. C. 30)
. C. 31)

.C. 32)

. C. 33)

. C. 34)
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1-sinN
thus sin( R) sin —i|n—t]:
1+si nN
1-sin 18 DNSU (5.C 35)
whi Chsl H-@Zé |§n Sln( ')In_](_ji'fgﬁﬁﬁﬁ))
.I. S0 T0 II 5. C. 36)
| DRY, - (
Im'ﬁ'qnssl o), - -0 (5. C. 37)
J % 2 5.C 38
In a simlar mbbﬁ]F EL proved that if E5-C-39§
i.e., for s=t € R, (5. C 40)

cos(8,s+N) and si nr('@(z) 3s+N)n:§re periodic functions with uni ESrrSdﬂll)a
| f

the nodul es’ 34(%%§Téiuap)and @Bn(&§+N) are increasing fantt #6hs

of teR,. Expression

can be sefsjequalr ct @ni(3¢ ntym) 9 '_//2 (5. C. 43)
1
2" sin2R

cosh(s)[1+2R+b, Tsin(8,5+N)]?

and

(5. C. 44)
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For n=o or ShBBRIE ¢ " ad opsd Gz ) |
[ 1+2R+b,,Tsi n(8,s+N’)]?
2", sin(ny)

(5. C. 45)

Si nce
cosh(t)[1+n +b, T(sin8,tcosN +sinN'cos8,t)]?

(5. C. 46)

5.C. 46 tends ubffb?ﬂ?o(@o 0%for t-~ For 0<n<B, nE(B/2)5.6.&TH4
becones

and the foregoing gnlaﬁ-\}ErIRs of cosh(s) and sin(8,5+N’) sr(\%wi: hgﬁt
=71 a

5h€( 48salbei hands ninbf arstiny 8,0( Bokari bi-nn) For n =(B/ 2),
nAE(B/2), nE(3B/2) wehave

Sihcé' N N 2"
i cos nt 1-sinn, (5.C 49)
+b T sin (¢
5! EMHY sBatrdhis dm%fr#vst%%' ABrt =8 N (5. C. 50)
Set

then dy m sE(s) = 0, Dee8lBeR

COSh(S) [ 1+2R+Db, TSIn(85+N)]2 (5.C. 51)

for any n>0.] ivbséevérs I$|nmc£_m have set k, =0, F(s) is analytic
everywhere in-the upper shal € pl ane, except at the pol es (5.C. 52)

Sn
B
and s=i (- +2kB) (5. C. 53)

The two pol es ofsew@l@lg{:ml}a)e in the upper half-plane are(gncgse y
deternined once k is #etermned. The correspondi ng val ues of t

residues of F(s) are invariant for all values of Kkel,; thus, to
eval uate the residues, k can safely be set equal to O. From t he
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t heory of residues?® we know that
where Ea is'iﬁbfjsuﬁﬁtdfdtﬁ?@i Dedl dues of F(s) at the pol éS. n56he
upper hal f-pl@dne. The residues can be evaluated as the linmits for

n.- B/2 and n,- 3B/ 2 of

wher el 1= Bi Anand n?, = 3B/ 2. 25 foe tipse linmits are respectively

24 3 —gj
eq%aldns I+0906ﬁ18t-cf,1-}tjleiﬁ Megumsi&p(o. Hence, the pPi FcPPhl
val ue ofl the integrali of 5le€skAnis 0

j=1,2

In a simlar way it can be proved that the principal value of the
integrals of 5.C 45, 5.C 2, 5.C3, 5.C4 and 5.C.6 are all equal to
0. In order to evaluate the integral of expression 5.C.5 by the
met hod of residues, |let us again substitute the conplex variable s
for the real variable t. W obtain

ety s ddseZalisgOSh (S) +,T cos(8,8N)]”
cosh(s)[1+2R+b, Tsin(8,s +N") ]2

everywhere in tlﬂénupspé:r( SI%aI:prI ane except at n=B/2, whef&. 6. 8857
is equal to

(5. C. 57)

Letl (82'GansPSer Nt he T 9% By Pur@iBlor 1 2
1-sinn . (5.C. 59)

1 ¢ L )
>s n 1+i—l nmng sin[i8,(n, +2kB) +N

28 See Sm rnov, 1982, 3.11, p. 227.
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FE%(sr), t$ edF(tn,nwols< and Eastwm&jnud%(sﬁf,iwst derivatives for all
a

ues of ne(0, B), except2 at the pol es;2 nor eover (5. C. 60)
—F(i,t]te]&)+F(n,t]§<nsB;teR+)
uni formy in thémsar?e':u(o%i:no Hence? (5.C 61)

where C is t'Hé'”£ nFdi®)ci98 d& ernined by 0<n<B and r=Is(5. M62he
real axis Fy(s) rray be witten as

Si nce R(le tesi duis) of FIE(E)O) nF(l?e Wper hal f-plane cancel out, we

nmust have (5.C.63)
+F(B, t|t e R) =F(t|t € R) —F(?,O)

H‘i”"[ F(t|t € R)dt F(E o]+f F(s)ds}:o (5.C. 64)

and therefongf F(t)dt F[f OI 0 (5. C.85)

T|hH1sfr Vel pi kov' f Bua}tl bh i€ reducek o8 N (5. C. 66)
oo [1+b,, T sin N2 o

whi CB(RIE:BS a,sj le" 219+ or T cos N2 X
- [1+b,, T sin N2
g %)]2 (5.C. 67)

. lr)u" :[ar*eeogﬁ'—'m%gﬁi ° (5. C. 68)

12 [1+T sin N2’

2 See Smirnov, 1989, 3.11, pp.223-229.
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6. Concl usi ons.

"Way is economcs |like the weather? Because both are highly
irregular if not chaotic, thus making prediction unreliable or even
i npossi ble."% This statenent is probably an effective synthesis of
Goodwi n''s views on the dynam cs of nobdern econom es. These vi ews,
or perhaps this "phil osophy", appear to the interested scholar |ike
the |l eading thread of Goodwin's |ifelong work on dynam cs.

In this paper it has been shown that this "philosophy" is not
i nconpatible with the usual economc axions, which state that
agents aimat maximzing either profits, or utility, or both. It
has al so been shown that synplectic transfornmations of coordi nates
are an essential tool of analysis when a Ham|tonian adjustnent
process is assuned, as is the case of Goodwi n's 1953 "Wl rasi an”
nmodel . Finally, it has been shown that, if real wages are not
entirely flexible and returns to scale are not constant, the
adj usnent process can generate very conplex, and in extrene cases
chaotic, notions.

30 Goodwi n, 1990, p. 1.



50

Ref er ences

Abraham R and Marsden, J.E. (1985) Foundations of Mechanics,
Addi son \Wésl ey.

D eudonné, J. (1969) Foundations of Mdern Analysis, Academnc
Press.

Eisele, J.A and Mason, R M (1970) Applied Mtrix and Tensor
Anal ysis, Wley Interscience.

Goodwi n, R M (1953) Static and Dynam c Linear CGeneral Equilibrium
Models, reprinted in Essays in Linear Economc Structures,
Macm | I an, 1983, pp. 75-120.

-- (1989) Swinging Along the Autostrada: Cyclical Fluctuations
Along the von Neumann Ray, in John von Neumann and WMbdern
Econom cs, Oxford, pp. 115-140.

-- (1990) Chaotic Econom c Dynam cs, Oxford.

Goodwin, R M and Punzo, L.F. (1987) The Dynamics of a Capitali st
Econony, Polity Press.

Guckenheimer, J. and Holnes, P. (1990) Non linear GOscillations,
Dynam cal Systens and Bifurcations of Vector Fields, Springer.

Hadely, G and Kenp, MC (1971) Variational Methods in Econonics,
Nor t h- Hol | and.

H rsch, MW and Snale, S. (1974) Dfferential Equations, Dynam cal
Systens _and Linear Al gebra, Academ ¢ Press.

Smirnov, V.I. (1982) Corso di nmatematica superiore, vol. 3.11,
Editori Riuniti. Italian translation fromthe original Kurs vyssej
mat emat i ki, Nauka, Mbscow.




Sor di ,

Vari an,

S.

(1990) Teorie del ciclo econom co,

H R (1984) M croeconom c Anal ysis,

CLUEB.

Nor t on.

51



TABLE 1
Paraneters of the two-sector

Initial Conditions
Model s
Si oux
-1
.1

. 4402
-.001
.02

model .

Pai ut e
.12

.09
. 4402
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Si mul t aneous Adj ustnment of Quantities and Prices:
an Exanple of Ham | toni an Dynam cs.
Paol a Antonell o
Abst ract

In a well-known 1953 essay, "Static and Dynam c Linear Genera
Equi li brium Model s", Richard Goodwin analyses the dynamc
adjustnent of quantities and prices to long period equilibrium in
a set of n "Walrasian" markets. He treats the crossed adjustnent of
prices and quantities as a linear Hamltonian vector field. In
nore recent works Goodw n has introduced non-linear perturbations
in his multisectoral adjustnment nodels, by assumng that real
consunption depends non-linearly on relative prices. Goodw n's use
of Ham | toni an dynam cs and of synpl ectic coordi nates changes opens
up a wde range of fascinating potential developnents for the
anal ysis of adjustnent processes in nultisectoral systens subject
to real perturbations. It has, however, not been totally exenpted
fromobjections, usually referring to the | ack of m crofoundations
of his macro dynamc analysis and to his use of non-Cartesian
coordi nate systens in econom CS.

The aim of this paper is threefold: i) to investigate whether
Goodwi n' s behavi oural hypot heses are conpatible with the assunption
that agents maximze. ii) To show that, if the dynam c process is
Ham | t oni an, synpl ectic coordi nates changes are essential tools of
analysis. iii) To analyse the dynam c behaviour of Goodw n's
Ham | toni an nodel, subject to the non-linear perturbation he
suggests in Chaotic Economc Dynamcs (1990), and to point out sone
of the devel opnents this approach nay | ead to.

Goodwi n's 1953 cross-dual nodel is at first derived froman opti mal
control nodel, the objective functional of which is the aggregate
excess profits function, i.e. the sumof sectoral excess profits.
Thi s nodel generates sinple harnonic notions. In the second part of
t he paper, the follow ng assunptions are introduced: a) the nom nal
wage is fixed and entirely spent for consunption; b) consuner
utility functions are Cobb-Douglas; c) consunmers aimto maximnm ze
their current wutility. Under these hypotheses, Goodwin's 1990
consunmer demand functions are easily derived. Since prices and the
real wage are flexible, the closed orbits solutions di sappear and
| ong period equilibrium beconmes asynptotically stable.

In the |last section of the paper, the analysis is restricted to a
two sector nodel. Goodw n's basis hypotheses are slightly nodified.
It is assuned that the wunperturbed tw degree of freedom
Ham I tonian is non-linear and has a honoclinic orbit. It is further
assuned that the perturbation is itself periodic. The economc
meani ng of these assunptions is that returns to scale are not
constant and that real wages are partially rigid. By applying
Mel ni kov's nethod, it is then proved that the perturbed Ham | toni an
system has transverse honoclinic orbits and, therefore, Snale



hor seshoes. Hence, under the assunptions of variable returns to
scale and of real wage rigidity the nodel can generate chaotic
transients or pure chaotic notions.
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