
1

A BRIEF GUIDE TO C AND C++ FOR FORTRAN PROGRAMMERS
Clopper Almon

Feb 1999 Version
Basic Syntax

1. C and C++ are free-form; anywhere that a blank may appear, any number of blanks or new line
characters may appear. This fact is used to give programs indentation which makes them easy
to read. The indentation, however, has no effect on the operation of the program. They are
case-sensitive: x is not the same as X.

2. Every expression statement ends with a ";" . Examples:
x = 1;
printf("Hello, World!");

Usually expression statements are assignments (like the first example), or function calls (like the
second).

3. A single character is represented thus: 'a'. This is one byte.

4. A zero-terminated string is enclosed in " ". For example: "Smith" or "a" . This latter is two
bytes: a0 . C provides a number of functions for working with such strings. Four commonly
used ones ares:

strcpy(a,b) string copy: copies string b to string a.
strlen(a) string length: returns the length of the string, the number of bytes in the string,

not counting the 0 at the end.
strcmp(a,b) string compare: returns 0 if a and b are the same string.
strcat(a,b) string concatenation: tacks string b onto the end of string a, making one

string.

5. Anywhere that one statement is called for, a group of statements enclosed in { } can be used.
A ";" is not required after the "}" except after the struct or class keywords.

6. The following logical operators are recognized:
&& and || or
< less than > greater than <= less than or equal >= greater than or equal = =
equal ! not != not equal

7. Subscripts are shown by [].

8. "If" statements have the form:
if(logical expression) statement

For example:
if(a == b){

x = z;

2

x = 0;
}

To illustrate point 1, this code could also be written:
if(a==b){x = z; x=0;}

"If ... else" constructions have the form
if(logical expression) statement else statement

For example:
if(a==b) x = a;
else x = 0;

This structure can be extended with any number of "else if" constructions. For example:
if(a==b) x = a;
else if (a < b) x = a*b;
else x = a+b;

The final "else" may or may not be present.

9. i++ is the same as i = i+1; i-- is the same as i = i - 1;
x += y is the same as x = x + y
x -= y is the same as x = x - y
x *= y is the same as x = x*y
x /= y is the same as x = x/y.

10. Looping may be done by while, for, or do...until statements. The format of the for statement
is:

for(initial; while; increment) statement
For example:

for(i=1; i <=n; i++){
x[i] = y[i];
y[i] = 0;
}

For while, the format is
while(logical expression) statement

For example, the same thing that was done with the for statement above could be done with a
while loop as follows:

i = 0;
while(i <= n){

x[i] = y[i];
y[i] = 0;
i++;
}

The last two statements could be compressed to
y[i++] = 0;

since the incrementing of i is done after the use of i as a subscript. This sort or coding, however,

3

is not recommended because it tends to be hard to read.

11. A comment may be shown by enclosing the comment in /* ... */. For example:
/* This kind of comment can extend over many lines or be at the beginning of a line */

A comment extending to the end of a line may be shown by just a // followed by the comment.
For example:

i++; // This is the same as i = i+1.

12. All data must be declared before using; for example:

short i, rows[10]; // i is a single, two-byte integer,
// rows[0], ..., rows[9] are ten two-byte integers.

long j,cols[10]; // j is a single, four-byte integer,
// cols[0], ..., cols[9] are ten four-byte integers.

float x, x[20]; // x is a single, four-byte floating point number.
// x[0], ..., x[19] are 20, four-byte floating point numbers.

double a[20][20]; // a[0][0] ... a[19][19] is an array of 8-byte floating point numbers.
char c, name[40]; // c is a single, one-byte character, name is an array of 40 characters
FILE *fp; // fp is a "file pointer", which is the way C refers to files.

13. Labels, comparable to statement numbers in Fortran, and the goto keyword are used in this way:
top: x = y;
....
goto top;

14. The statements break and continue can only occur inside loops. The break statement breaks
out of the present loop. The continue statement jumps to the next iteration of the loop. Note
that C's continue is radically different from the Fortran CONTINUE.

15. When calling a function, C passes a copy of the value of an argument whereas Fortran passes
the pointer to the argument. In a Fortran program, it is therefore very dangerous to modify the
value of, say, an integer that was passed to it. In C, that modification causes no problem. It is
passing arguments by value rather than by reference that makes C recursive, that is, that give it
the possibility for a function to call itself. (G uses this feature to simplify greatly the programing
of the evaluation of the right side of f commands.) If it is desired to pass the pointer to
something, then the argument should be the pointer.

Here is a simple program for practice in reading. You will find it in the rolodex.cpp file. Although
it uses many of the basic C control statements, it is fairly close to Fortran or Basic in its logic. In the
following sections, we will expand it and make it more C-like and finally C++ like.

4

/* The Rolodex Program -- First Version************************************\
This program works like a Rolodex file. It asks the user "Whom do you want?" and looks up
the answer in a file of names and addresses. If it finds the name, it displays the line
in the file which begins with that name. It begins by asking the user to supply the name
of the data file. Each line in the data file should begin with a name followed by a comma.
***/

#include <stdio.h> /* The #include directs the compiler to include the "header" file
stdio.h which defines for the compiler the "standard input-output"
functions, including printf, which is used below. The <> tells the
compiler to look in its own "include" directory to find this file.*/

#include <string.h> /* Similarly, for string.h, which is needed for all the string
functions. If the compiler complains that it has no prototype for
the function you have used, look up the function in the Library
Reference manual. It will show what what header file you need.*/

void main() // The name of the main program is always main.
{

FILE *fp; //fp will be a "file pointer", C's identification for a file
char filename[40],name[40],person[120],him[40],found;
int go, i;

query: printf("Filename:"); //Display the message on the screen.
gets(filename); //Get a zero-terminated string from the user.
if((fp = fopen(filename,"rt")) == 0){

/*Attempt to open a text file by that name for reading. The "rt" is
"reading-text". The alternative to t is b for binary. The alternative to r is w
or w+ for writing or writing and reading. If the attempt is successful, the value
of the file pointer will not be 0. Therefore the following statement is reached
only if the attempt failed.*/

printf("Cannot open %s.\n",filename);//Error message
goto query;
}

go = 1;
while(go == 1){ //Start an infinite loop. Only a "break" will get us out.

printf("Whom do you want?");
gets(name);
if(strcmp(name,"q") == 0) break;
fseek(fp,0,0); //Position the fp file to the beginning.
found = 'n';
while(fgets(person,120,fp) != NULL){

/*The fgets() gets a line from the fp file. It becomes a zero-terminated
string in "person". A maximum of 119 bytes will be read, but if there are
fewer bytes in the line, only as many will be read as are found. Now put the
name, (the first 40 characters or until a comma is encountered) into "him".
*/
for(i=0;i<40;i++){

if(person[i] != ',') him[i] = person[i];
else break;
}

him[i] = '\0'; //Make "him" a properly terminated string.
if(strcmp(name,him)==0){

printf("%s\n",person);
found = 'y';
break;
}

}
if(found == 'y') continue;
printf("%s is not in the Rolodex.\n",name);
}

}

Exercises
1. Compile, link, and run rolodex. If you machine has be set up properly, these commands will do

5

the compiling and linking.
cp rolodex
m rolodex

Steal a look at rolodex.dat so you will know whom you can find. Then start the program with
rolodex

When asked "Filename:", reply "rolodex.dat".

2. If there are two people by the same last name, this program will find only the first. Make the
program ask "Is this the right one?" and if the answer is no, make it keep looking. Use the
getch() function. Look it up in the Library Reference.

3. Make the program accept either a comma or a space as terminating the name in the input file.

Pointers and Dynamic Space Allocation

Our rolodex.cpp has to read the whole file every time it wants to find someone. A smarter
program would read it all once, extract the names, put them in an index kept in RAM, and record
with each the location in the file of the first byte of that line. Then when the user asks for someone,
the program just looks through the index and, if it finds the name in question, positions the file to the
beginning of that line, reads it and displays it.

Now some names are long like Krollpfeiffer while others are short like Ma. In our index we
would like to use just as many characters as necessary to store the name, no more, no less. To do
so, we must allocate space for storing the name after we know how long it is. That is, we must
allocate the space dynamically, after the program is running. This we will do with the "new"
command of C++. (In C, the same thing was done a little less elegantly by the malloc function, which
still works in C++.)

The other new idea in this section is that of pointers. There are two aspects of any number or
letter used in a program: (1) where it is stored, its address and (b) the value that is stored there, its
content. In the code

int x;
x = 2;

the second line makes the content of x equal to 2. Often it is enough to deal only with contents, but
sometimes, as we shall see, it is convenient to know the address of x. In C, the address of any item
is given by putting a & in front of it. Thus &x is the address of x; in C jargon, &x is the pointer to
x. Conversely, if name is a pointer, then *name is the content of what it points to. In particular, *&x
is the content of x. Now when an array is declared,
for example, by

char name[40],
name itself is a pointer to the first byte in this array. Thus, name is exactly the same as &name[0].
We can say that name is a pointer to a character. An almost equivalent alternative to the above

 In DOS, the "heap" is what remains of the 640K after your program has been loaded. The only1

difference between the effect of these two lines and the "char name[40];" declaration is where the
memory is allocated. If the declaration occurs within a program, the memory is allocated on the
"stack", which is where there are stored values of local variables and information about where
functions should return control when they finish. The stack is much more limited than the heap, so
if you get the message "stack overflow!" when you try to execute your program, you should go over
to the second method. In the Borland compilers, you can also put "extern unsigned _stklen =
65536U;" above the main() statement. This line sets the stack length to its maximum size.

6

declaration would be
char *name;
name = new char[40];

The first line declares name to be a pointer to a character. The notation is intended to be mnemonic;
put a * in front of name and you have a character. The second line grabs 40 bytes from "heap"
memory, assigns them to this program, and sets name to point to them.1

Now what we need is not just space for one name but space for a large number. We need an
array of names. Let us use maxrolo as a maximum number of names in our rolodex and set it equal
to 1000. Then we need something like this near the beginning of our program:

const int maxrolo = 1000;
char **names;
names = new char*[maxrolo];

In the first line, the "const" protects the value of maxrolo from inadvertent change in the program.
The second line says that names is to be a pointer to pointers to characters. The third line grabs
enough space for 1000 pointers to characters and sets names to point to the beginning of this space.
Then as we read through our rolodex data file the first time and have the name from the kth line in
the array "him", we just do

len = strlen(him);
names[k] = new char[len+1];
strcpy(names[k],him);

The middle line grabs space for len+1 characters and sets names[k] to point to the beginning of it.
We need len+1, not len, to allow space for the zero at the end of the string.

With the names taken care of, we can quickly attend to the remaining matter, the position in the
file of the beginning of the corresponding line. The ftell function tells us where a file is at any time.
We store these positions in an array of unsigned long (four-byte) integers. We will also put this array
on the heap, so the program is something like this

unsigned long *positions;
...
positions = new unsigned long[maxrolo];
...

Just before the kth read of the fp file, we do

7

positions[k] = ftell(fp);
When we are looking for a name and have found that it is the kth one, we need to put the file back
where it was just before reading that kth line. The statement is just

fseek(fp,positions[k],0);
The final 0 argument means to position from the beginning of the file.
We now have all the elements we need. Here is the new version of the program modified to use
pointers and dynamic allocation.

/* The Rolodex Program with an index*/
#include <stdio.h> // for printf()
#include <string.h> // for strcmp()
#include <conio.h> // for getch()
void main()
{

FILE *fp;
char filename[40],name[40],person[120],him[40],found;
int go, i, n, k, len;
char **names,c;
unsigned long *psn;
const int maxrolo = 1000;

psn = new unsigned long[maxrolo];
names = new char*[maxrolo];

query: printf("Filename:");
gets(filename);
if((fp = fopen(filename,"rt")) == 0){

printf("Cannot open %s.\n",filename);
goto query;
}

// Make the index
k = 0;
while(k < maxrolo){

psn[k] = ftell(fp);
if(fgets(person,120,fp) == NULL) break;
for(i=0;i<40;i++){

if(person[i] != ',' && person[i] != ' ') him[i] = person[i];
else break;
}

him[i] = '\0';
len = strlen(him);
names[k]= new char[len+1];
strcpy(names[k],him);
k++;
}

n = k;
go = 1;
while(go == 1){

printf("\nWhom do you want?");
gets(name);
if(strcmp(name,"q") == 0) break;
search:
for(k= 0; k < n; k++){

if(strcmp(name,names[k]) == 0){
fseek(fp,psn[k],0);
fgets(person,120,fp);
printf("%s\n",person);
printf("Is this the right one? (y or n):");
c = getch();
printf("%c\n",c);
if(c == 'n') continue;
break;

8

}
}

if(k == n) {
printf("%s is not in the Rolodex.\n",name);
continue;
}

}
}

Structures

The arrays which we have used so far, and which are characteristic of Fortran programs, are
collections of similar items. We have seen:

char filename[40]; // an array of characters
char **names; // an array of pointers to characters
unsigned long *positions; // an array of unsigned long integers.

We have not used but you can readily imagine how to use
float x[40]; // an array of 4-byte floating point numbers
int years[30]; // an array of 2-byte integers
double **a; // a matrix of 8-byte floating point numbers.

It frequently happens, however, that we would like to have unlike elements grouped together.
Thus, we may have a data bank with various sorts of information on individuals. On each individual,
we might have

name a character string
date of birth an array of three integers
income a floating point number

and so on. C provides a device for grouping together such diverse pieces of information. It is known
as a structure. Structures are useful for two reasons. First, one can pass all information about an
individual to a function (or subroutine in Fortran terms) by just passing a pointer to the structure.
In Fortran, if you want a function to work on a matrix, you have to pass to the function the pointer
to the rectangular array and the pointer to the number of rows and the pointer to the number of
columns. (Yes, you used pointers in Fortran and never knew it.) In C, you just put these three
elements into a structure and pass the pointer to the structure. Thus the calls to functions are much
simplified. Second, the main thing that C++ did was to generalize the C structure just slightly. The
whole power of "object oriented programming" is achieved through these structures.

We will now re-write rolodey.cpp into rolodez.cpp to use a structure. We need a very simple
one. For each line in the data file, we just put together the items we need for the indexing. We will
call our structure a "line". Here is the code that defines its contents.

struct line{
char *name;
unsigned long position;
};

Note the ; after the }. This is the one place that it is necessary. Once "line" has been defined in this
way, it is just as much a data type as int, float, char, and so on. We put the definition of the structure

9

above the main() line so the compiler knows what a "line" is when it encounters the following
declaration.

line *Lines;
Lines = new line[maxrolo];

Here Lines is an array of pointers to line structures. The "new" statement grabs enough space for
maxrolo (1000) of these pointers and sets Lines to point to the beginning of that space. Note that
at this point, no space has been grabbed for the content of the name in each line, only for the pointer
to that content. Now as we read the rolodex data file, we fill in the position and name for each line.
Note how the elements of the structure are referred to by the pointer to the structure followed by a
"." followed by the name of the element. The part of the program which reads the file becomes the
following.

k = 0;
while(k < maxrolo){

Lines[k].position = ftell(fp);
if(fgets(person,120,fp) == NULL) break;
for(i=0;i<40;i++){

if(person[i] != ',' && person[i] != ' ') him[i] = person[i];
else break;
}

him[i] = '\0';
len = strlen(him);
Lines[k].name = new char[len+1];
strcpy(Lines[k].name,him);
k++;
}

The part of the code that looks up the name the user has given now has these two lines:

if(strcmp(name,Lines[k].name) == 0){
fseek(fp,Lines[k].position,0);

In this simple example, I would not claim that the use of the structure offers much advantage.
The point has been, rather, to show the mechanics of using a structure in an example that is simple
enough to do without it. The full code for this third stage of the rolodex program, rolodez.cpp,
follows.

10

/* The Rolodex Program with a structure*/
#include <stdio.h> // for printf()
#include <string.h> // for strcmp()
#include <conio.h> // for getch()

struct line {
char *name;
unsigned long position;
}; // note the ; here.

void main()
{

FILE *fp;
char filename[40],name[40],person[120],him[40];
int go, i, n, k, len;
char c;
const int maxrolo = 1000;
line *Lines;

Lines = new line[maxrolo];

query: printf("Filename:");
gets(filename);
if((fp = fopen(filename,"rt")) == 0){

printf("Cannot open %s.\n",filename);
goto query;
}

// Make index
k = 0;
while(k < MAXROLO){

Lines[k].position = ftell(fp);
if(fgets(person,120,fp) == NULL) break;
for(i=0;i<40;i++){

if(person[i] != ',' && person[i] != ' ') him[i] = person[i];
else break;
}

him[i] = '\0';
len = strlen(him);
Lines[k].name = new char[len+1];
strcpy(Lines[k].name,him);
k++;
}

n = k;
go = 1;
while(go == 1){

printf("\nWhom do you want?");
gets(name);
if(strcmp(name,"q") == 0) break;
search:
for(k= 0; k < n; k++){

if(strcmp(name,Lines[k].name) == 0){
fseek(fp,Lines[k].position,0);
fgets(person,120,fp);
printf("%s\n",person);
printf("Is this the right one? (y or n):");
c = getch();
printf("%c\n",c);
if(c == 'n') continue;
break;
}

}
if(k == n) {

printf("%s is not in the Rolodex.\n",name);
continue;
}

11

}
}

12

Classes

The most significant advances of C++ over C lie in the expansion of the structures concept. They are
to allow functions to be part of the structure.
to allow operators such as +, -, *, and = to be overloaded so that they apply to structures for

which the programmer has defined them.
to make it possible to derive one structure from another so that the derived structure has all the

elements of the original plus some of its own.
to make it possible to restrict access to some elements of a structure.

The first of these will be illustrated with the rolodex example. The others are abundantly illustrated
in the Beginners' Understandable Matrix Package, BUMP, whose study should follow that of this
brief introduction.

Structures with these characteristics are often called classes, and C++ has introduced the rather
redundant keyword class for such a structure. The difference between a structure and a class lies
in the last of the four points and indeed only in the default accessibility of its elements. In a structure,
all elements are by default accessible from any part of the program, although the programmer can
explicitly restrict access; in a class, they are all restricted to "private" by default but the programmer
can explicitly make them accessible. The purpose of the final point, in case it seems rather strange,
is to facilitate the division of labor where a number of programmers are working on one project. The
programmer working on a particular structure commits to giving it certain functions that
programmers working on other parts can depend upon. The internal working of the structure,
however, she is free to change anyway she likes without inconveniencing her colleagues. It is
obviously rather difficult to demonstrate the usefulness of the feature in small programs.

Instances of a class are called objects. The rolodex program with an object, rolodaze.cpp,
augments the structure definition at the top as follows:

struct line {
char *name;
unsigned long position;
void load(char *who, unsigned long psn);
char check(char *who);
}; // note the ; here.

Here, load is a function which will allocate space for the name, copy the name to that space, and store
the position number. Here is its code.

13

void line :: load(char *who, unsigned long psn){
int len;

position = psn;
len = strlen(who);
name = new char[len+1];
strcpy(name,who);
}

Note the way it is identified in the first line as a member function of the line structure. Also note
that, as a member of the line structure, it is on a first-name basis with the other elements of the
structure. It can refer to "position" and "name" without having to precede these names with a
reference to the structure.

The check function is used to compare the name requested by the user with the name in this line
and, if a match is found, to read the line from the rolodex data file and display it. It returns 'y' if it
finds a match and 'n' otherwise. Here is the code.

char line :: check(char *who){
char person[120];
if(strcmp(who,name) == 0){

fseek(fp,position,0);
fgets(person,120,fp);
printf("%s\n",person);
return('y');
}

return('n');
}

With this work pushed into the structure, the main program is briefer although the total length is
greater. Here is rolodaze.cpp.

14

/* The Rolodex Program with an Object */
#include <stdio.h> // for printf()
#include <string.h> // for strcmp()
#include <conio.h> // for getch()

struct line {
char *name;
unsigned long position;
void load(char *who, unsigned long psn);
char check(char *who);
}; // note the ; here.

FILE *fp; // This has been moved outside any program to make fp global, accessible from
anywhere.
void main()
{

char filename[40],name[40],person[120],him[40],found;
int go, i, n, k;
char c;
line *Lines;
unsigned long psn;
const int maxrolo = 1000;

Lines = new line[maxrolo];

query: printf("Filename:");
gets(filename);
if((fp = fopen(filename,"rt")) == 0){

printf("Cannot open %s.\n",filename);
goto query;
}

// Make the index
k = 0;
while(k < maxrolo){

psn = ftell(fp);
if(fgets(person,120,fp) == NULL) break;
for(i=0;i<40;i++){

if(person[i] != ',' && person[i] != ' ') him[i] = person[i];
else break;
}

him[i] = '\0';
Lines[k].load(him,psn);
k++;
}

n = k;
// Loop, asking whom the user wants to see.
go = 1;
while(go == 1){

printf("\nWhom do you want?");
gets(name);
if(strcmp(name,"q") == 0) break;
for(k= 0; k < n; k++){

if(Lines[k].check(name) == 'y'){
printf("Is this the right one? (y or n):");
c = getch();
printf("%c\n",c);
if(c == 'n') continue;
break;
}

}
if(k == n) {

printf("%s is not in the Rolodex.\n",name);
continue;
}

}
}

15

16

void line :: load(char *who, unsigned long psn){
int len;

position = psn;
len = strlen(who);
name = new char[len+1];
strcpy(name,who);
}

char line :: check(char *who){
char person[120];
if(strcmp(who,name) == 0){

fseek(fp,position,0);
fgets(person,120,fp);
printf("%s\n",person);
return('y');
}

return('n');
}

Constructors and Destructors

The objects in rolodaze.cpp were still simple enough that we did not have to construct or destroy
them. Let us now make a larger object which we shall call rolo, an instance of a class called Rolodex.
With this object, we can reduce the main program to

char filename[40],name[40];
query: printf("Filename:");
gets(filename);
Rolodex rolo(filename);

// Loop, asking whom the user wants to see.
while(1){

printf("\nWhom do you want?");
gets(name);
if(strcmp(name,"q") == 0) break;
rolo.find(name);
}

}

Note that in the first line in bold print we declare that rolo is an object of type Rolodex. In the
second, we call the "find" function of this object. We want a Rolodex object to construct itself when
declared, that is, we want it to open the file whose name was passed to it, read this file, and construct
a rolodex index such as we have been using. Obviously, so complicated a constructor has to be
specially written. Likewise, when we are through with an object, it is important to be able to destroy
it, that is, to free up the RAM it is occupying so that it can be used again, if need be, later in the
program. The definition of the Rolodex structure must show that it has these various functions.
Here is that definition of both the line and the Rolodex structures.

struct line {

17

 private:
char *name;
unsigned long position;

 public:
line(){name=0;position= 0;}
void load(char *who, unsigned long psn);
char check(char *who, FILE *fp);
~line();
};

struct Rolodex{
 private:

FILE *fp;
line *Lines;
int maxrolo,nlines;

 public:
Rolodex(char *filename);
~Rolodex();
void find(char *name);
};

In the Rolodex function, the three functions we have mentioned appear below the line "public:". That
line makes those functions accessible from anywhere in the program, whereas the elements defined
to be "private" are accessible only to these three member functions and other functions explicitly
declared to be "friends" of the structure. This structure has no friends; in BUMP we will see
structures with lots of friends. A constructor always has the same name as the structure, so
Rolodex(char *filename) is the constructor. A structure may have several constructors if they are
distinguishable by the number and type of arguments which they have. The destructor always has as
a name the name of the structure preceded by a ~. Thus, ~Rolodex() is the destructor. There is never
more than one destructor and it has no arguments. Constructors and destructors cannot have return
values, so their names are not preceded by a return type in the structure definition. Because one and
the same main program might now conceivably have several Rolodex objects, we have put fp,
maxrolo, and nlines (the number of lines in the data file) into the Rolodex structure. Since the
constructor cannot return a value to let the calling program know if it had trouble, a global variable,
RoloOpen, has been introduced to allow it to communicate with the program which calls it. Here is
the new part of the Rolodex constructor. Putting in the now-familiar code for making the index has
been left as an exercise.

18

Rolodex::Rolodex(char *filename)
{

int k,i;
char person[120], him[40];
unsigned long psn;

maxrolo = 1000;
Lines = new line[maxrolo];
if((fp = fopen(filename,"rt")) == 0){

printf("Cannot open %s.\n",filename);
RoloOpen = 'n'; /* This round-about communication is necessary

because a constructor cannot return a value. */
return;
}

RoloOpen = 'y';
// Make the index
k = 0;
while(k < maxrolo){

/* exercise */
}

nlines = k;
}

Now we have to deal with the destructor. Here it is. The necessary points are noted in the
comments.

Rolodex::~Rolodex(){
delete [] Lines; // the [] is required to show that Lines is an array.
fclose(fp); /* Since fp was opened in the constructor, it must be

closed in the destructor. */
}

When the program hits the line "delete [] Lines" it will recall that is has maxrolo "line" objects in
Lines, and will call the destructor for line that many times in inverse order. That is, it will delete line
maxrolo-1 first and line 0 last. The destructor for a line object is

line::~line(){
if(name != 0)

delete [] name;
}

Note the test on the value of name . Unfortunately, it is very destructive to "delete" something which
has not been assigned with a "new" or something which has already been deleted. Look back now

19

at the definition of the line structure. Its constructor was so short and simple that it could be written
in the definition without cluttering it up. It was just

line(){name=0;position= 0;}

Note, however, that it assures us that name is initially equal to 0 so that the test in the destructor
will work correctly.

It is clear when a constructor is called. When is the destructor called? In C++ jargon, the
answer is When the object goes out of scope. But what does that mean? In the simplest case, which
is all we shall deal with, it means that if the object was declared as a local variable in a function, its
destructor is called when that function is completed and returns. To check that our destructor is
working correctly, we will put the declaration of the Rolodex in a function called sub(). We will
check the free core left before we call sub and again after it returns. If we get the same answers both
times, we know that our destructors are working correctly.

#include <alloc.h> // for coreleft()

// Function prototypes
void sub(void);

// Global variables
char RoloOpen;

void main()
{

unsigned long core;

core = coreleft();
sub();
printf("Original core left: %ld\n",core);
core = coreleft();
printf("Final core left: %ld\n", core);
}

void sub(void){
char filename[40],name[40];
query: printf("Filename:");
gets(filename);
Rolodex rolo(filename); // This is a declaration, just as is the "char" line.
if(RoloOpen == 'n') goto query;
printf("Intermediate core left: %ld\n", coreleft());

20

// Loop, asking whom the user wants to see.
while(1){

printf("\nWhom do you want?");
gets(name);
if(strcmp(name,"q") == 0) break;
rolo.find(name);
}

}

C++ insists upon knowing the format, or prototype, of each function before that function is used.
Most of these prototypes have been provided in the structure specification. The function sub(),
however, is not part of any of these so it must have its own prototype statement. It differs from the
first line of the declaration of the function by ending in a ";". Here it is.

// Function prototypes
void sub(void);

With these components, you should be able to put together the final version of the rolodex program,
complete with constructors and destructors. It is called roldover.cpp on the disk, but it would be a
good exercise for you to write it from what has been given here.
Once it works properly, try removing the fclose from the Rolodex destructor. Do you get back all
your core?

Exercise

Create a Vector structure which has the following definition.

struct Vector{
 private:
 int n; // number of elements
 float *v; // the elements
 public:
 Vector (char *filename); // Read the vector from the named file text file.
 ~Vector(); // Destructor
 int show(char *title, int FieldWidth = 8, int DecimalPlaces = 2);

 // Display the vector on the screen
 float sum(); // return the sum
 float enorm(); // Return the Euclidian norm (Square root of sum of squares)
 float lnorm(); // Return the l-norm. (sum of absolute values)
 float mnorm(); // Return the m-norm. (max absolute value)

};

21

You should write all the functions and verify that they work. You may choose any format you like
for the text file from which you read the vectors. Perhaps the easiest format for which to program
is to put the number of elements on the first line and the elements on the following lines, one per line.
You may use the function atof() to convert text strings to floats. Read about atof in the compiler help
files.

Overloading Operators and Friends

The Vector structure that you wrote in the last exercise was fine as far as it went, but perhaps
it occurred to you that the Vectors were lonely. There was no way for them to interact with one
another. It should be possible to add Vectors together or to find the angle between two of them. In
this section, we show how to overload the + and = operators so that one can write code such as

Vector a("a.vec"),b("b.vec"),c(4);
c = a + b;
c.show("C = A + B");

To do so, we will need to expand the definition of the Vector class to the following.

struct Vector{
 private:
 int n; // number of elements
 float *v; // the elements
 char temp; // y if the vector has been created by an operator

void freet(){if(temp == 'y') freeh();}
 public:
 Vector(char *filename); // Read the vector from the named file text file.

Vector(int n, char temporary = 'n');
Vector(Vector& a); // Copy constructor

 ~Vector(); // Destructor
void Vector::show(char *title,int FieldWidth=8, int DecimalPlaces=2);

 float sum(); // return the sum
 float enorm(); // Return the Euclidian norm
 float lnorm(); // Return the l-norm. (sum of absolute values)
 float mnorm(); // Return the m-norm. (max absolute value)

void freeh(); // Free the heap memory.
Vector& operator = (const Vector& a);
float& operator [](const int i);
friend Vector operator + (const Vector &a, const Vector &b);
};

The new elements have been shown in bold type. The simplest is the "temp" character. Why
is it necessary?

22

Consider the problem of adding three vectors:

d = a + b + c.
The computer will first have to add a and b to get an intermediate result. Then to this intermediate
result, it must add c. Then it should throw away the intermediate result. If it does not throw it away,
the computer's RAM will soon become clogged with these intermediate results and the program will
grind to a halt. Thus, operators like + will need to create temporary vectors to hold the intermediate
results. Timely disposal of these intermediate results is the trickiest part of achieving the goals of this
section. This "temp" flag will be used by the operators to indicate that the vector is such an
intermediate product and can -- and must -- be thrown away when it is no longer needed.

Now let us turn to the first of two new constructors. It just constructs a vector of n elements
and sets the temp element to the letter passed by the call. Writing it can be left as a exercise. If one
calls the constructor by, say, just "Vector c(4);", the default value of the temp flag, n, will be used.
On the other hand, this same constructor handles a declaration like "Vector c(4,'y');" within an
operator to create an intermediate Vector with the temp set to 'y'. Writing this constructor is simple
enough to be left as an exercise.

The next item to considered is the "friend" function that overloads the operator +. A function
declared within the definition of the structure to be a friend can access the private elements of the
structure. Here is the code for this function.

Vector operator + (const Vector& a, const Vector& b){
int i;
if(b.n != a.n){

printf("Vector dimensions do not match in + operator.\n");
exit(1);
}

Vector Temp(a.n,'y');
for(i = 0; i < a.n; i++)

Temp.v[i] = a.v[i] + b.v[i];
a.freet();
b.freet();
return (Temp);
}

After checking that the dimensions match, a vector called Temp is constructed with the right number
of elements and marked as temporary. Now the way that the + operator works makes the vector on
the left of the + the first argument and the vector on the right the second argument. The &'s in the
declaration of the function means that these vectors will be passed to the function by reference, not
by copying. The for loop adds the two vectors together and puts the sum in Temp. The keyword
const in the declaration of the function is a compiler assistant. It tells the compiler that the following
argument is not changed by the function and allows faster compilation. It should be unnecessary.
Unfortunately, the Borland Builder C++ compiler has made const mandatory in some contexts, even
where the argument is not constant. However, changing a variable declared as const produces only

23

a compiler warning and the code works correctly, while omitting it in these contexts produces a
compiler error, and nothing works. All of the code in these notes previously worked without const.

We have just seen a temporary vector created by an operator. A little thought about how you
would use temporary scratch paper if you were adding vectors by hand should soon convince you that
no temporary is ever used more than once. Hence, we check to see if a was a temporary, and if so
we delete it, and likewise for b. These checks are the "freet" calls. (Freet is short for Free if
Temporary.) The code for freet was given "in line" in the definition of the structure. That code used
the function freeh(), for free heap memory, which is defined as follows:

void Vector::freeh(){
if(v != 0) delete v;
v = 0;
}

If the pointer to the array in the vector is not zero, this frees the heap memory assigned to it and sets
the pointer equal to 0.

Now finally note that operator + returns the Temp vector it has just created. But Temp was
created in this function and therefore must be destroyed when the function "goes out of scope" or
"returns". Now the compiler cannot both return Temp and destroy it, so what does it do? It first
makes a copy using the copy constructor, the one whose argument is just a pointer to another object
of the same type. Then it destroys the original of Temp. We can take advantage of this knowledge
in writing the copy constructor. If we see that the object being copied is a temporary, the copy
constructor can just steal the heap memory that belonged to the object being copied, for we can be
sure that the temporary is headed straight for the destructor. This theft prevents the heap from
becoming fragmented. If we had allocated new memory on the heap for the copy, it would have been
above the memory for the original temporary, so when this latter memory was freed, we would have
had a hole in the heap. While such a hole is not necessarily the end of the world, it is certainly better
to have a compact heap, for any one call of the "new" command can only allocate one continuous
chunk of contiguous memory. If the heap becomes fragmented, "new" may not be able to find
enough space all in one piece even though it available in scattered parcels. Here is the code for the
copy constructor and for the destructor that keeps the heap compact.

// The Copy constructor
Vector::Vector(Vector& a) {

int i;

n = a.n;
temp = a.temp;

if(a.temp == 'y'){ // If we are copying a temporary,
v = a.v; // steal the temporary's piece of the heap,
a.v = 0; // and tell it that it has been robbed.
}

24

else{
if((v = new float[n]) == 0){

printf("Out of memory trying to create vector.\n");
exit(1);
}

for(i = 0; i < n; i++)
v[i] = a.v[i];

}
}

// The destructor
Vector::~Vector(){

if(v != 0) // check to see if it has been robbed.
 delete v; //if not, delete it.

v = 0;
}

The meaning of the operator & in function definitions requires some explanation. In the
declaration of the copy constructor,

Vector::Vector(Vector& a),
it simply meant that it was sufficient to pass just a reference to a to the routine; it was not necessary
to make a separate copy of a for the purpose. The matter is somewhat more perplexing when we
come to write the overloading of the [] and = operators for Vectors. We want to define [] so that
if b is a Vector, we can write b[i] for the ith element of b on either the right or the left side of an
equal. Now note that in a state as simple as

x = x+1;
what the compiler does with the x on the right of the = is totally different from what it does on the
left. On the right, it takes data from "x" while on the left, it puts data into "x". An expression which
can be used in this way on either side of an = but with a very different meaning on the left side is
called an lvalue, meaning something that can be used on the left of an = sign. In the example, the
expression x is an lvalue. The expression x+1 is not an lvalue; it can only be used on the right side
of the = sign. Clearly, we want the [] function to return an lvalue value so that we can use b[i] on
either side of an = sign.

We get this lvalue by a & in the declaration of the function that overloads [] thus:

 float& Vector::operator [] (const int i)

What is returned? NOT a pointer to a float, but an "lvalue" for the float. Of course, what is returned
must itself be an lvalue. The return statement in this function is
 return (v[i]);
and v[i] is certainly an lvalue. But it requires the & in the return type of the function to preserve the

25

lvalue character of what is returned. The complete code for the [] operator, which also checks that
the subscript is in range, is as follows.

float& Vector::operator [](const int i) {
if(v==0){

printf("Error: Reference to a deleted vector.\n");
exit(1);
}

if (i < 0 || i >= n){
printf("Illegal vector index %d.\n",i);
exit(1);
}

return(v[i]);
}

The code for the = operator also uses the & to indicate that what is returned is an lvalue, in this
case the lvalue of the Vector on the left of the = sign. The overloading of the = operator can only
be a member function, not a friend. In it, the Vector a, the argument, is the vector on the right side
of the = sign. The Vector on the left is the present Vector. Here is the code.

Vector& Vector::operator = (const Vector& a){
int i;
int s = (n < a.n) ? n : a.n;
for(i = 0; i < s; i++){

v[i] = a.v[i];
}

a.freet();
return(*this);
}

The code clearly copies the a Vector into the present vector and frees a if it is a temporary. The
word this is a keyword in C++ and is a pointer to the present instance of the structure. We do not,
however, want to return a pointer to the present vector but a reference to it. Thus we return *this,
not this. The & in the return type of the function ensures that we get an lvalue, which will make the
compiler happy. If the explanation of why the [] and = operators are written the way they are seems
to you a little strained, I fully agree. The fat books on C give next to no explanation but only an
example. The const keyword in the declaration will cause a compiler warning, but if omitted, there
is an a compiler error. The code seems to work fine. Surely requiring the const is a bug in the
compiler.

Exercise
Expand the vector structure so that x - y, x*y, a*x, and x/a are defined, where x and y are Vectors
and a is a float. For x*y, use the "dot" or "inner" product definition. In your test program, try such
expressions as a*(x -y) or (w-x)*(y - z). They should work correctly.

