
The Craft of Economic Modeling

Part III. Multisectoral Models

Clopper Almon

SIXTH EDITION
April 2, 2016

Input-Output Flow Table

Seller \ Buyer Agriculture Mining Exports Imports
Agriculture 20 1 0 100 5 0 2 0 15 1 0 40 -20 36 164
Mining 4 3 20 15 2 1 2 0 2 1 0 10 -10 3 50
Gas&Electric 6 4 10 40 20 10 25 0 80 10 0 0 0 90 205
Mfg 20 10 4 60 25 18 20 0 400 80 200 120 -170 630 787
Commerce 2 1 1 10 2 3 6 0 350 10 6 10 0 376 401
Transport 2 1 5 17 3 2 5 0 130 20 8 5 0 163 198
Services 6 3 8 45 20 5 20 0 500 40 10 30 -20 560 667
GovInd 0 0 0 0 0 0 0 0 0 150 0 0 0 150 150
Intermediate 60 23 48 287 77 39 80 0 614
Deprec. 8 4 40 40 25 30 20 0 167
Labor 68 21 31 350 150 107 490 150 1367
Capital 20 2 56 60 40 12 59 0 259
Indirect tax 8 0 20 50 109 10 18 0 215
Value added 104 27 147 500 324 159 587 150 2008
ColSum 164 50 205 787 401 198 667 150 1477 312 224 215 -220 2008

Gas
 & Elec

Manufac-
turing

Com-
merce

Trans-
port

Ser-
vices

Govt.
Ind

Consump-
tion

Govern-
ment

Invest-
ment

Final
Demand

Row
Sum

The Craft of Economic Modeling

Part III. Multisectoral Models

Clopper Almon

Department of Economics
University of Maryland

College Park, MD 20742

April 2016
Sixth Edition

April 2016
Copyrighted by the Interindustry Economic Research Fund, Inc.

P.O. Box 451, College Park, Maryland, 20740
Telephone 301-405-4608

CONTENTS

CONTENTS...i
ACKNOWLEDGEMENTS..iii
CHAPTER 14. INPUT-OUTPUT IN THE IDEAL CASE..1

14.1. Input-Output Flow Tables..1
14.2. Input-Output Equations. The Fundamental Theorem...5
14.3. Combining Input-Output and Institutional Accounts...8
14.4. A Historical Note..12

CHAPTER 15. INPUT-OUTPUT COMPUTATIONS..15
15.1. Introduction to Input-Output Computing with Just G7..15
15.2. Iterative Solutions of Input-output Equations..33
15.3. The Seidel Method and Triangulation..38

CHAPTER 16. BUILDING MULTISECTORAL MODELS WITH INTERDYME..........................41
16.1. Introduction to Interdyme...41

Regression Equations and Accounting Identities...41
IdBuild, the Interdyme Version of the Build Program...43
Writing MODEL.CPP for Tiny...48
Running the Interdyme Model..54
More on Interdyme Programming..62

16.2. Matrix Tools in Interdyme..65
16.3. Vector Elements in Regression Equations..67
16.4. Systems of Detached-Coefficient Equations..71
16.5. Import Equations..77
16.6. Speeding Up Solutions with Read and Write Flags...83
16.7. Changing Input-Output Coefficients and Prices..85
16.8. Fixes in Interdyme..88

Macro Variable Fixes..88
Vector and Matrix Fixes...95
Output Fixes...99

CHAPTER 17. MATRIX BALANCING AND UPDATING..101
17.1. The RAS Algorithm...101
17.2. Convergence of the Algorithm...102
17.3. Preliminary Adjustments Before RAS...104

CHAPTER 18. TRADE AND TRANSPORTATION MARGINS AND INDIRECT TAXES..........107
18.1. Trade and Transportation Margins...107
18.2. Indirect Taxes, Especially Value Added Taxes...108

CHAPTER 19. MAKING PRODUCT TO PRODUCT TABLES...109
19.1. The Problem...109
19.2. An Example..110
19.3. The No-Negatives Product-Technology Algorithm..114
19.4. When Is It Appropriate to Use This Algorithm?..116
19.5. A Brief History of the Negatives Problem..117
19.6. Application to the U.S.A Tables for 1992...119

i

19.7. The Computer Program..123
CHAPTER 20. A PERHAPS ADEQUATE DEMAND SYSTEM..127

20.1. Problems and Lessons of the AIDS Form..127
20.2. Slutsky Symmetry and Market Demand Functions...128
20.3. A Perhaps Adequate Form..129
20.4. The Mathematics of Estimation...134
20.5. Comparative Estimation for France, Italy, Spain, and the USA..137
Appendix A. Use of the Estimation Program..153

ii

ACKNOWLEDGEMENTS

This third volume of The Craft of Economic Modeling has benefited from work by Inforum staff,
Inforum international partners, as well as many students, research assistants and visiting researchers.
The material has been used in teaching a graduate course in modeling at the University of Maryland,
as well as in numerous seminars in Italy, Russia, Poland and China.

The software which accompanies the book, G7, was written primarily by the author but with many
contributions and corrections by students and associates. In particular, I mention with gratitude
those who have helped in the development of the programs. This group includes Paul Salmon,
Douglas Meade, Qiang Ma, Qisheng Yu, Frank Hohmann and Ronald Horst. Douglas Meade has
helped to port the newest version to Open Office 4.3 and update the text. Many, many others too
numerous to mention have made valuable suggestions.

Finally, I am grateful to all my colleagues at Inforum who have both encouraged the work on this
project and liberated me to pursue it.

iii

iv

CHAPTER 14. INPUT-OUTPUT IN THE IDEAL CASE

14.1. Input-Output Flow Tables

Multisectoral models begin from an accounting of the flows of goods and services among various
industries of the economy. Table 14.1 shows a simple interindustry accounting, or input-output flow
table, for an imaginary but not unrealistic eight-sector economy which we will call Tiny. The
simplicity is to make it easy for us to concentrate on essential concepts without being overwhelmed
by big tables of data. In Table 14.1, the selling industries are listed down the left side of the table.
The last industry, abbreviated as "GovInd," is "Government Industry", a fictitious industry which
simply supplies the government with the services of its own employees. Below these come the
classes of factor payments: Depreciation, Labor compensation, Capital income (such as interest,
profits, rents, or proprietor income), and Indirect taxes (such as property taxes, sales taxes, and
excise taxes as on alcohol, tobacco, and gasoline). Note the similarity of these categories of factor
payments to the categories of national income. Their sum is the row named Value added. Across the
top of the table the same eight industries are listed as buyers of products. Here they are followed by
columns corresponding to the principal divisions of the "product side" of the national accounts:

• Con - Personal consumption expenditure

• Gov - Government purchases of goods and services

• Inv - Investment

• Exp - Exports

• Imp - Imports (as negative numbers)

In input-output terms, these are the final demand columns. The next-to-last column, labeled FD for
"Final Demand," shows their sum. It is shaded to emphasized that it is derived by summing other
columns. The next last column, also shaded, is the sum of all the (non-shaded) elements row.

Across each row of the table the sales of that industry to each of the industries and final demand
columns are shown. Thus, the 100 in the Agriculture row and Manufacturing (Mfg) column means
that Agriculture sold 100 billion dollars (bd) of products to Manufacturing in the year covered by
this table. Typical sales here are grains to milling, live animals to meat packing, or fruits and
vegetables to plants which can or freeze them. The 15 in the Personal consumption (Con) column of
the same row means that Agriculture sold 15 bd of products directly to households during the year.
These sales are primarily fresh fruits and vegetables and eggs. In the table shown here, which is in
producer prices, agricultural products are recorded at the price the farmer received for them. These
products are not necessarily bought at the farm gate. Going through wholesale and retail trade
channels does not change the industry of origin of a product; going through a manufacturing process
does. Thus, an orange sold as an orange to she who eats it appears as a sale from Agriculture to
Personal consumption, despite the fact that it was purchased in a store. Another orange that was
turned into frozen orange juice appears first as a sale from Agriculture to Manufacturing at the price
received by the farmer. It then reappears as a sale from Manufacturing to Personal consumption at
the manufacturer's price. Yet the price paid by the ultimate consumer is neither the price received by
farmer in the first case nor by the manufacturer in the second. Where is the difference, the
commercial margin? In this table, it is in the sales of Commerce to Personal consumption
expenditure. Transportation margins are handled similarly. Tables made with this pricing

1

convention are said to be "in producer prices". We shall look at other ways of handling the problem
of margins in Chapter 16.

As we look down the column for an industry, we see all the products which it needs for making its
own. In the Agriculture column, we see first of all 20 bd from Agriculture itself. These are sales
primarily of feed grains to animal husbandry, but include also sales of seed, hay, manure, and other
products. These sales within the industry are common and are referred to in input-output jargon as
"diagonals" because they appear on the main diagonal of the table. Further down the Agriculture
column we see 4 bd for Mining, primarily crushed limestone, but also some coal. The 20 bd spent
on Manufacturing bought gasoline, fertilizers, and pesticides. The 2 bd spent on Commerce were
trade margins on these manufactured products. The 2 bd spent on Transport included transportation
margins on the products of the other industries as well as costs incurred by the farmer in getting
products to market. The purchases from Services includes the services of veterinarians, lawyers, and
accountants. All the purchases of the industries from each other are called "intermediate" purchases
because they do not go directly to the final user but are "mediated" by other industries. The sum of
the intermediate purchases by each industry are in the row labeled "Intermediate" and shaded, as
before, to show that it is derived by adding other entries in the table.

Below the "Intermediate row" are the value-added rows. We find that Depreciation of equipment
came to 8 bd. Labor received 68 bd. (In our imaginary economy, we imagine that proprietor income
has been divided between labor and capital income. In most actual tables, it will be shown separately
or classified as capital income.) The 20 bd of capital income includes interest payments, corporate
profits, and capital's portion of proprietor income. The 8 bd of Indirect taxes is mostly property
taxes.

The Capital income row of value added includes both corporate profits and proprietor income. Since
it is the total of sales minus the total of expenses, the column sum for each industry is equal to its
row sum. For example, the row sum of Agriculture is 164 and the column sum (of the unshaded

2

Table 14.1. Input-Output Flow Table

Seller \ Buyer Agriculture Mining Mfg Con Gov Inv Exp Imp FD Row Sum
Agriculture 20 1 0 100 5 0 2 0 15 1 0 40 -20 36 164
Mining 4 3 20 15 2 1 2 0 2 1 0 10 -10 3 50
Gas&Electric 6 4 10 40 20 10 25 0 80 10 0 0 0 90 205
Mfg 20 10 4 60 25 18 20 0 400 80 200 120 -170 630 787
Commerce 2 1 1 10 2 3 6 0 350 10 6 10 0 376 401
Transport 2 1 5 17 3 2 5 0 130 20 8 5 0 163 198
Services 6 3 8 45 20 5 20 0 500 40 10 30 -20 560 667
GovInd 0 0 0 0 0 0 0 0 0 150 0 0 0 150 150
Intermediate 60 23 48 287 77 39 80 0 614
Deprec. 8 4 40 40 25 30 20 0 167
Labor 68 21 31 350 150 107 490 150 1367
Capital 20 2 56 60 40 12 59 0 259
Indirect tax 8 0 20 50 109 10 18 0 215
Value added 104 27 147 500 324 159 587 150 2008
ColSum 164 50 205 787 401 198 667 150 1477 312 224 215 -220 2008

Gas
 & Elec

Com-
merce

Trans-
port

Ser-
vices

Gov
Ind

entries) is 164, and so on for all eight industries. This fact has a remarkable consequence which is
the cornerstone of national accounting, namely that the sum of all the value-added entries is equal to
the sum of all the final demand entries. In our table, each of these groups of entries is surrounded by
a double line and each adds to 2008. Why is the total the same? Since the sum of each of the eight
industry rows, say R, is equal to the sum of the corresponding column, the sum of all eight rows,
2622, is equal to the sum of all eight columns, say C, which is also 2622. Thus we have with R = C.
But the total of the final demands, D, is R minus the total of the intermediate flows, say X, or D = R
- X. Likewise, the total value added, V, is C, the sum of all the industry columns, less the sum of
that part of them which is intermediate, or V = C - X. But R = C implies that R - X = C - X or D =
V. Naturally, this D or V has a name, and that name is Gross Domestic Product. We have thus
proved the fundamental identity of national accounting: Gross Domestic Product (GDP) is the same
whether measured by the products that go to final demand or by the income which goes to factors.
In our table, this identity appears in the fact that the sum of the FD column, 2008, is the sum of the
Value added row, also 2008, which is the GDP of this economy. Arrayed in format of national
accounts, our economy would appear as in Table 14.2.

Before leaving Table 14.1, we must make a fundamental point about it. With one small exception,
the table makes sense in physical units. We can measure the output of Agriculture in bushels, that of
Mining in tons, that of Gas and Electricity in BTU's, Transport in ton-miles, Labor in worker hours,
Capital income in ounces of gold, and so on. Wassily Leontief, maker of the first input-output table,
used to often insist in seminars that any calculations had to make sense in physical terms1.

The small exception, however, is important: the column sums of a table in physical terms are utterly
meaningless since all the elements are in different units. Naturally, the row totals -- which are
meaningful -- do not equal the meaningless totals of the corresponding columns. This point would
seem so obvious as to be not worth making were it not for the fact that it is often forgotten, precisely
by the makers of input-output tables. For if a table is made in the prices of some year other than the
year to which it refers, it is essentially in physical units. Thus, we can make a table for 2000 in 1980
prices, where the physical measure in each row is "one 1980 dollar's worth" of the product. In other
words, the physical unit for each product is how much of it one dollar would buy in 1980. For any
product for which a price index can be made, 2000 dollar amounts can be converted into 1980 dollar
physical units by the price index. For value added, since there is no very natural unit, one can
simply deflate all of the value-added cells by the GDP deflator. The total real value added will then
be the same as total real final demand. One can have in this way a perfectly sensible, meaningful

1 In fact, tables in physical terms have been developed for several countries, and are essential to the study of materials
flows.

3

Table 14.2 The Income and Product Account

Gross domestic product 2008 Gross domestic product 2008
 Personal consumption 1477 - Depreciation 167
 Investment 224 = Net domestic product 1841
 Exports 215 - Indirect taxes 215
 Imports -220 = National income 1626
 Government purchases 312 Labor income 1367

 Capital income 259

table. But its column sums are meaningless and certainly do not equal the corresponding row sums.

Unfortunately, some table makers have disregarded this fact and have simply forced the value added
in each industry of such a table to equal the difference between the row sum of the industry and the
sum of the intermediate inputs into it. The results make as much sense as saying that five squirrels
minus three elephants equals two lions. The arithmetic is right but the units are crazy.

This practice is called "double deflation" because first the outputs are deflated and then the
purchased inputs deflated and subtracted from the deflated output to obtain a mongrel, mixed-up-
units number, possibly positive but also possibly negative, mistakenly alleged to be a measure of
"constant-price value added". It is indeed what would have been left over for paying primary
factors, had producers gone right on producing with the previous period’s inputs after prices have
changed. That is certainly no measure of “real value added,” for it is not, in all probability, what
producers did. The error would perhaps be easier to see if labor input, for which we have some
measures of cost, were considered as an intermediate input and indirect taxes were simply subtracted
in current prices from output. The double-deflation procedure should then give a measure of “real
capital income.” In such a table, the deflators for capital income would be different in different
industries. The residuals might well be negative, especially if there were a few years between the
two periods. Trying to deflate the difference between two numbers that are very close together by
deflating each of the two numbers by different deflators and then taking the difference between the
two deflated items is simply asking for trouble.

The difficulties due to double deflation are often masked by the taking the time periods of the tables
close together and “chaining” the index, so that negative values are unlikely. But the calculation still
really does not make sense. Unfortunately, these procedures are sanctioned by international
statistical standards, and many statistical offices engage in them. Economists have made matters
worse by taking these mixed-units numbers as measures of "real" product in studies of productivity.

As far as I am aware, there is no satisfactory way of measuring real productivity at the individual
industry level, precisely because industries cooperate with one another in production, and how they
do so changes. In one year, for example, the “television set industry” is a collection of plants that
make the cabinets, the tubes and the electronics, and assemble the sets. In a later year, the industry
has become assembly plants that buy cabinets, tubes, and electronics and assemble them. Clearly,
changes in sales (even in constant prices) divided by labor input in worker hours in this one industry
is not an appropriate measure of productivity increase. Rather, changes in “productivity” in this
case is meaningful only as applied to how much labor and capital is required by the whole economy
to produce a television set. We shall see how it can be meaningfully calculated. The meaningful,
correct calculation has nothing whatever to do with double deflation. But the quest to allocate the
changes in whole-economy productivity for particular products to individual industries is a search
for a nonexistent – and superfluous – El Dorado2.

2 A mythical “city of gold”, searched for by Sir Walter Raleigh and many Spanish explorers.

4

14.2. Input-Output Equations. The Fundamental Theorem.

An input-flow table describes an economy in a particular year. Its greatest value, however, lies in
the ability it gives us to answer the question What would the outputs, value added, and intermediate
flows have been had the final demands been different? To answer that question in the simplest
possible way, we must assume that the ratio of each input into an industry to that industry's output
remains constant when the final demands are changed. These ratios are known as the "input-output
coefficients," and may be defined by

a ij=
x ij

q j

where x ij is the flow from industry i to industry j in Table 14.1 and q j is the output of industry
j, that is, it is the sum of row j or column j in the same table. For example,

a1,4=
100
787

=0.12706

Table 14.3 shows the complete matrix of these input-output coefficients corresponding to Table 14.1.

Table 14.3. Input-Output Coefficients

If we are willing to suppose that these coefficients remain constant as the final demand vector
changes, then for any vector of final demands, f, we can calculate the vector of industry outputs, q
from the equation

q=Aq+ f (14.2.1)

where A is the square matrix of input-output coefficients in Table 14.3. If we happen to choose as f
the column vector of final demands in Table 14.1, (the first eight elements of the FD column:
(36,3,90, ..., 150)'), then q should be the column vector of industry outputs of Table 14.1 (the vector
of row sums of the eight industry rows: (164,50,205,...,150)'). For other values of f, of course, we
will find other values of q.

One way of solving (14.2.1) is to rewrite it as

(I −A)q= f

or

q=(I−A)
−1 f

The matrix of (I −A)
−1 on the right of this equation is known as the Leontief inverse of the A

5

Agric Mining Gas&Elec Mfg Com Trans Serv GovInd
Agriculture 0.1220 0.0200 0.0000 0.1271 0.0125 0.0000 0.0030 0.0000
Mining 0.0244 0.0600 0.0976 0.0191 0.0050 0.0051 0.0030 0.0000
Electricity 0.0366 0.0800 0.0488 0.0508 0.0499 0.0505 0.0375 0.0000
Manufacturing 0.1220 0.2000 0.0195 0.0762 0.0623 0.0909 0.0300 0.0000
Commerce 0.0122 0.0200 0.0049 0.0127 0.0050 0.0152 0.0090 0.0000
Transportation 0.0122 0.0200 0.0244 0.0216 0.0075 0.0101 0.0075 0.0000
Services 0.0366 0.0600 0.0390 0.0572 0.0499 0.0253 0.0300 0.0000
GovInd 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

matrix. For our example, it is shown in Table 14.4. Its elements have a simple meaning. Element
(i,j) shows how much of product i must be produced in order to produce one unit of final demand for
product j. This interpretation is readily justified by taking f to be a vector of zeroes except for a 1 in
row i. Then q will be the ith column of (I - A)-1, and its jth element will show exactly how much of
product j will have to be produced in order to supply exactly one unit of i to final demand. In our
example, in order to supply one unit of Agricultural product to final demand, 0.1691 units of
Manufacturing must be produced. Note that, in the example, all elements of the Leontief inverse are
non-negative. In view of the economic interpretation, that result is hardly surprising. Later in this
chapter, we will show mathematically that the Leontief inverse from an observed A matrix is always
non-negative.

Table 14.4. The Leontief Inverse (I −A)
−1

We may also ask how much of a primary resource, such as Labor or Capital, would be needed for the
production of a given final demand. We may define the resource coefficients similarly to the input-
output coefficients by

rij=
y ij

q j

where y ij is the payment to factor i by industry j. For example, from Table 14.1, y2,4 , the
payment to resource 2, Labor, by industry 4, Manufacturing, is 360. If we denote by R the matrix of
the r ij , then the vector of total payments to each resource for an output vector q is Rq, and for a
final demand vector, f, it is

R(I −A)
−1 f .

If we now think of each row of this matrix as a row vector and sum these vectors – a process which
makes sense if all the rows are measured in monetary values in the prices of the year of the table –
we get a row vector v of value-added per unit of output. Just as previously we asked how output q,
would change if f changed while A remains constant, we can now ask how prices p would change if
v changed while A remains constant. The row vector p must satisfy the equations

p= pA+v (14.2.2)

These equations state simply that the price of a unit of each product is equal to the cost of all
products used in producing that unit (the first term on the right) plus value-added per unit produced.
Just as the equations (14.2.1) provide the fundamental connection in multisectoral models between
final demands and outputs, so these equations provide the fundamental connection between unit
value added and prices. If we want to know how specific changes in productivity or in wages in one
or several industries will affect prices in all industries, these equations are the key. If we calculate

6

Agri. Mining Gas&El. Mfg. Comm. Transport Services Govt Ind.
Agriculture 1.1647 0.0620 0.0107 0.1634 0.0263 0.0165 0.0096 0.0000
Mining 0.0405 1.0830 0.1126 0.0352 0.0144 0.0150 0.0092 0.0000
Gas & Electric 0.0617 0.1137 1.0683 0.0748 0.0623 0.0641 0.0452 0.0000
Manufacturing 0.1691 0.2530 0.0538 1.1201 0.0791 0.1091 0.0396 0.0000
Commerce 0.0184 0.0276 0.0093 0.0185 1.0077 0.0180 0.0106 0.0000
Transport 0.0210 0.0319 0.0304 0.0297 0.0120 1.0151 0.0102 0.0000
Services 0.0604 0.0911 0.0548 0.0791 0.0612 0.0379 1.0368 0.0000
Govt Industry 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

the prices for v vector given in the table, we should find that all prices are equal to 1.

There is, furthermore, a relation of fundamental importance between the solutions of the two sets of
equations. Namely, given any A, f, and v, the q and p which satisfy q=Aq+ f and p= pA+v
also satisfy

vq= pf (14.2.3)

This equation says that the value of the final demands evaluated at the prices implied by equations
(14.2.2) are equal to the payments to the resources necessary to produce those final demands by
(14.2.1). Thus, if our outputs and prices satisfy the required equations, we can be certain that GDP
measured by the final demands in current prices will be equal to the GDP measured by the payments
to resources (or factors) in current prices. If we build these equations into our models, we can be
certain that the models will satisfy the basic accounting identity in current prices. This relation may
well be called the fundamental theorem of input-output analysis. Fortunately, it is as easy to prove
as it is important, and you should produce your own proof. If you need help desperately, turn the
book upside down and read it.

7

Multiply (14.2.1) on the left by p to get
(A) pq = pAq + pf
Multiply (14.2.2) on the right by q to get
(B) pq = pAq + vq
Subtract (B) from (A) to get
(C) 0 = pf - vq or pf = vq

14.3. Combining Input-Output and Institutional Accounts

The national accounts which we have presented so far in
connection with the input-output table lack some of the
concepts which we found very useful in macroeconomic
modeling, such as Personal income, Personal disposable
income, Personal saving, Personal income taxes, and
Government transfers to persons. The basic
“institutions” in national accounts are (1) Persons, (2)
Businesses, (3) Governments, and (4) Rest of World.
Sometimes businesses are divided between financial and
non-financial businesses, but we will not make that
distinction in Tiny. “Persons” includes non-profit
corporations such as private universities. The Rest of
the World, abbreviated as RoW, shows only transactions
of “institutions” of other countries with the “institutions”
of the country concerned.

The institutional accounts begin with the allocation of
components of value added from the input-output
accounts to the institutions which receive them. Labor
income is allocated to Persons; Depreciation and Capital
income is allocate to Business; Indirect taxes are
allocated to Governments. Government transfers, such
as social insurance and welfare payments, are then
moved from Governments to Persons, to give Personal
income. Then taxes are moved from Persons and
Business to Governments, with Disposable income as
the balance.

There are several ways to present these accounts. The
simplest is similar to that used in the USA NIPA and should be familiar from the discussion of the
AMI model in Part 1 of this book.

A consequence of the fundamental identity of the total value added and the total final demand in the
input-output table is that the total saving is identically zero. You can exercise your mental arithmetic
to quickly verify this identity for Tiny. The NIPA-style account is clear, easy to read, and easy to
convert into a program for calculation. Furthermore, data for several years can be conveniently
shown in parallel columns that make comparison easy. Its disadvantage is that its form does not
make evident why total saving is zero or what are matching entries. For example, the form of the
accounts does not show that Personal taxes paid by Persons is the same as Personal taxes received by
Governments.

That shortcoming is overcome in a second way of presenting the institutional accounts, a way I will
call the Balances presentation. This presentation also makes clear why total saving is zero. It is
shown in the table below.

8

In the first line, the “Primary distribution” of Value added, labor income is given to Persons;
Depreciation and Capital income, to Business; and Indirect taxes, to Governments. To the right of
the = sign are the components of Final demand. The sum of the items to the left of the = sign is, of
course, equal to the sum of those on the right.

Next follow two transfer lines that (1) move Interest and dividends from the Business column to the
Persons column, and (2) move Government transfers to persons from the Government column to the
Persons column. The next line, labeled “Balance: Institutional Income,” is a balance line, the sum
of the preceeding lines. In the Persons column, it gives Personal income. Below it, the Direct taxes
transfer line moves personal income taxes from Persons to Government and could also move
corporate profit taxes from Business to Governments. (For Tiny, however, we have assumed that
these corporate taxes are zero.) The next balance line, the sum of the previous balance line with the
intervening transfer line, gives Disposable income by institution. Then follow the lines which
subtract the final demand expenditures from the institutions which make them. The final balance
line then gives the savings of each institution on the left of the = sign and zeroes on the right. Of
course, the sum of the items on the left of this last line equals the sum of the items on the right,
namely, zero. Thus, this presentation makes it clear why total saving, including that of the Rest of
the World in our country, is always zero. The major disadvantage of this layout is that it cannot
show data for several years in close proximity for easier comparison.

The international System of National Accounts (SNA) used by most countries other than the USA,
uses a presentation based on the Balances Presentation, but somewhat more complicated and much
less clear. Here it is for Tiny.

9

Under each institution are two columns, one for sources of funds for the institutions and one for uses
of funds. Instead of a single line for each of the balances, two lines are necessary, one to take the
totals and one to show (in the Sources column) the result of subtracting total uses from total sources.
I have not shown a balance line of Institutional of income (of which Personal income is a highly
useful instance) because this concept plays no role in the SNA, which thus fail to give a concept
useful as a base for calculating personal income taxes. The SNA presentation does not make clear
why total saving is zero and requires two lines for each balance instead of one. However, I have
seen a number of presentations in which the total lines ares omitted, thus making it very hard for the
reader to figure out what is going on. The main virtue of the SNA presentation is that it largely
avoids negative numbers.

Yet a fourth presentation combines the input-output table with the institutional accounts in what is
called a Social Accounting Matrix or SAM. The SAM for Tiny is shown in Table 14.8. In an input-
output table, the row sums equal the corresponding column sums for the industries. The SAM
generalizes that idea so that all accounting identities are expressed by requiring the sum of each row
to equal the sum of the corresponding column in a square matrix. In the SAM for Tiny, the first rows
are those of the input-output table, both the products and the value-added. Below these rows, we add
a row for each institution, one for each final demand column, and finally a row for saving. Between
the columns for industries and the final demand columns we slip columns with the same names as
the value-added rows, and then a column for each institution. After the final demand columns, we
append one corresponding to the Savings row. The “Primary distribution” line of the SNA-Style
accounts is then represented by the total of each type of value added into the cell at the intersection
of row for the institution receiving the income and the column of the type of income. At this point,
the row totals equal the column totals for the industries and for value-added components. The
transfers among institutions are then shown by entering the amount in the row of the receiver and the
column of the payer. The totals of each final demand column are entered into the corresponding row
in the column of the institution purchasing that final demand. All row totals now equal
corresponding column totals except for the four institutions. Their row totals are their receipts while
their column totals are their expenditures. They differ by the amount of saving by each institution.
So if we now enter these savings in the Saving row at the bottom of the table, the row totals equal
the column totals also for the institutions. The row sum of the Saving row is, as has been said

10

Institution
Transaction Sources Uses Sources Uses Sources Uses Sources Uses

Primary distribution 1367 426 215 220 215

220 220

150 150

226 226
Totals 1737 226 426 220 441 150 220 215

Balance:Disposable income 1511 206 291 5

1477

312

224

Totals 1511 1477 206 224 291 312 5

Balance: Saving 34 -18 -21 5

Table 14.7. Institutional Accounts for TINY: SNA-Style Presentation

 Persons Business Governments Rest of World

 Interest and dividends

 Government transfers

 Personal tax

 Personal consumption expenditures

 Government expenditures

 Business investment

repeatedly, zero, so to match the Saving row, we just need an all-zero Saving column.

Social Accounting Matrices have proven quite popular with economists. They are a way to combine
national accounts with a consistent input-output table and institutional accounts. Their main
advantage is that the form makes the consistency evident. But as the input-output table increases in
detail, the SAM becomes worse as a way of actually viewing data. Consequently, we will make no
further use of SAM’s and will generally use the NIPA-like presentation because of the important
advantage that data for several years can be shown in parallel columns.

To illustrate the use of integrated national accounts in combination with interindustry tables, we need
historical series for at least the national accounts aggregates. I have made up such a data bank for
Tiny with the values shown above for the year 2000 and with values for other years from 1978 to
2003 made up by assuming a movement similar to that of the corresponding entry in the USA NIPA.
These “historical” series are in the Tiny data bank.

11

Table 14.8. A Social Accounting Matrix for TINY

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Ag Min G&E Mfg Com Trans Gov Ind Labor Capital Ind Tax Bus PCE Gov Invest Exp Imp Tot

1 Ag 20 1 0 100 5 0 2 0 15 1 0 40 -20 164

2 Mining 4 3 20 15 2 1 2 0 2 1 0 10 -10 50

3 G&E 6 4 10 40 20 10 25 0 80 10 0 0 0 205

4 Mfg 20 10 4 60 25 18 20 0 400 80 200 120 -170 787

5 Commerce 2 1 1 10 2 3 6 0 350 10 6 10 0 401

6 Transport 2 1 5 17 3 2 5 0 130 20 8 5 0 198

7 Services 6 3 8 45 20 5 20 0 500 40 10 30 -20 667

8 0 0 0 0 0 0 0 0 0 150 0 0 0 150

9 8 4 40 40 25 30 20 0 167

10 Labor 68 21 31 350 150 107 490 150 1367

11 Capital 20 2 66 60 40 12 59 0 259

12 8 0 20 50 109 10 18 0 215

13 Persons 1367 220 150 1737

14 Firms 167 259 426

15 215 226 441

16 0

17 PCE 1477 1477

18 312 312

19 Invest 224 224

20 Export 215 215

21 Import -220 -220

22 Saving 34 -18 -21 5 0

23 Col Sum 164 50 205 787 401 198 667 150 167 1367 259 215 1737 426 441 0 1477 312 224 215 -220 0

Serv Dep
Per-
sons Gov't RoW Sav

GovInd

Deprec.

IndTax

Gov't

RoW

Gov Purch

14.4. A Historical Note

All of us tend to presume that the world was made the way we found it; if there were input-output
tables in it when we arrived, then they must have always been there. Of course, that is not the case.
In fact, they are so much connected with the work of one man, Wassily W. Leontief, that without his
remarkable contribution they would probably not have been developed until decades later. Born in
St. Petersburg in 1906, he was already a university student when the Bolsheviks began taking over
the educational program. He joined a group protesting this process, was caught pasting up a poster,
spent a while in jail and was periodically jailed and interrogated thereafter. Though deeply
interested in the economy of his country and in the efforts at economic planning, he clearly had little
to hope for from the Bolshevik government. Even as an undergraduate, however, his paper on "The
Balance of the Economy of the USSR" describing efforts in Russia to investigate interindustry
relations came to the attention of professors in Germany. When he graduated from the University of
Leningrad in 1926, he was offered the possibility of graduate study in Germany, but it was already
difficult to get out of the Soviet Union. By an extraordinary turn of fate, he developed a bone tumor
on his jaw. It was removed, but the surgeon warned him that he would surely soon die. Armed with
the surgeon's written statement, he argued to the officials that he should be allowed to leave the
country since he would certainly be useless and possibly expensive to the government. The
argument worked, and in 1925 he arrived in Germany with the tumor in a bottle. It was there re-
examined and found ... benign! His work in Germany led, via Nanjing, to an appointment at the
National Bureau of Economic Research in New York. His theoretical writings came to the attention
of the Harvard faculty which offered him an instructorship. He accepted the Harvard offer on the
condition that he be given a research assistant to help him build what we would now call an input-
output table. The reply informed him that the entire faculty had discussed his request and had
unanimously agreed that what he proposed to do was impossible and, furthermore, that even if it
were done, it would be useless. Nonetheless, they were so eager to have him come that they would
grant the request and hope that he would use the resources for better purposes. He didn’t. In 1936,
his first results were published; in 1939 a book Structure of the American Economy appeared. It had
input-output tables for the United States for 1919 and 1929. The theoretical parts of the book had
the major ideas of input-output analysis: coefficients, simultaneous solution, and price equations.
During World War II, Leontief constructed, with support of the U.S. Bureau of Labor Statistics
(BLS), a 96-sector table for 1939 and, by 1944 was able to study changes in employment patterns
which could be expected after the end of the war. In 1947, a second edition of the book appeared
with the addition of a 1939 matrix and a comparison of input-output and single-equation
projections.3 In 1973, he was awarded the Nobel prize in economics for this work. Leontief
remained active until shortly before his death in 1999 at the age of 93.

In 1949, a group at the BLS began work on a 400-sector table for 1947. A 190-sector table was
published in 1952, but financing – which had come through the Defense budget – for the more than
fifty people working on the project was discontinued early in the Eisenhower administration, so that
neither the full table nor the extensive documentation of the details of its production were ever
published.

3 The spelling of Leontief's name in Latin letters was for German speakers; English speakers almost invariably
mispronounce it, though he never corrected anyone. In Wassily, the W is pronounced V, the a is long as in "father," and
the accent is on the si which is pronounced "see". In Leontief the accent is on on and the ie is pronounced like the ye in
"yet". The final f is a soft v.

12

In other countries, making of tables spread rapidly. They were incorporated in the United Nation's
standard System of National Accounts prepared by Richard Stone. In 1950, the first international
conference on input-output methods was sponsored by the United Nations; the eleventh (without
U.N. support) was held in 1995.

In the late 1950's, Soviet authors, eager to make input-output acceptable in their country, put together
a table for the Soviet Union in 1924 and argued that all the essential ideas had originated in the
Soviet Union. The difference, however, between what they could find in the literature of that period
and Leontief's comprehensive treatment only heightens an appreciation of his contribution.

Gradually, it has come to be recognized that an input-output table is not only useful for economic
analysis and forecasting but is also an essential step in making reliable national accounts. The
statistical offices of most major industrial countries, therefore, prepare input-output tables, often on a
regular basis. Annual tables for France, the Netherlands, Norway, and Japan are prepared as a part
of annual national accounting. In the USA, a comprehensive table is made every five years in the
years of economic censuses (years ending in 2 and 7) and is used in revising and "benchmarking" the
national accounts.

In 1988, the International Input-Output Association was organized as a group of individuals
interested in using input-output techniques. In 1989, it began publishing its own journal, Economic
Systems Research.

The Interdyme modeling system, like the G7 program, was developed by the Inforum group in the
Department of Economics at the University of Maryland. It has been used in developing and linking
dynamic input-output models of about twenty countries. Most of these models have been developed
and used mainly in the country concerned.

13

14

CHAPTER 15. INPUT-OUTPUT COMPUTATIONS

15.1. Introduction to Input-Output Computing with Just G7

In this section, we will see how to turn the Tiny input-output table and data bank into a simple input-
output model using only commands available in G7. In this model, we will move each final demand
column forward and backward over the period 1995 to 2003 by the index of the corresponding GDP
component in the Tiny data bank. Then we move all the final demand vectors except investment up
by 3.0 percent per year from 2003 to 2010. Investment is moved forward by a wavy series
composed of a base series growing at 3.0 percent per year plus a sinusoidal function. Input-output
coefficients and the composition of the five final demand components are kept constant. Outputs by
each industrial sector are then calculated for every year from 1995 to 2010. With the additional
assumption that the shares of each type of income in value added by each industry remain constant,
we calculate income of each type in each industry. Piecewise linear trends in the input-output
coefficients, value-added coefficients, and composition of the final demand vectors could easily be
introduced, but that has been left as an exercise. This model is incomplete and somewhat
inconsistent with itself for many reasons, including the following:

1. It does not assure consistency of Personal consumption expenditure with the Personal income
it implies;

2. It does not relate the imports of a product to the domestic use of the product;

3. Investment is not detailed by industry and related to the growth of the industry as found by
the model.

Introducing such features to exploit the full potential of input-out modeling will require the
Interdyme software described in the following chapter. Despite these limitations, such simple
models as the one described here, though with greater industry detail and more finely divided final
demands, have been widely used by groups which have a macroeconomic model and want the
industry outputs consistent with the its final demand forecasts.

Working with input-output in G7 requires the use a VAM (Vectors And Matrices) file. As the name
suggests, this type of data bank holds time series of vectors and matrices. G7 has commands which
can add, subtract, multiply, and invert matrices and add and subtract vectors and multiply them by
matrices. Thus, the operations discussed so far, and several others, can easily be performed in G7. A
VAM file differs in two important respects from the G data banks we have worked with so far:

1. In the standard G bank, all elements are the same size. Specifically, a time series of a single
variable begins at the base year of the data bank and extends over the number of
observations in the bank, as specified by the G.CFG file. In VAM files, elements are time
series of vectors or matrices of various dimensions. As in the standard G bank, all time
series are the same length.

2. In standard G banks, we can create new series as we work, for example, with f, fex, or data
commands. In VAM files, we buy the flexibility of having elements of various sizes by
specifying at the outset (in a file usually called VAM.CFG) the contents of the file, that is,
the names and dimensions of each vector or matrix in the bank along with the names of the
files giving the titles of the row or columns of the vector or matrix. One might suppose that
it is a bit of nuisance to have to specify this structure of the VAM file at the outset. In
practice, however, this need to pre-specify structure proves a useful discipline in building

15

complex models. If, as a model evolves, it becomes necessary to revise the specification of
the VAM file, it is easy to copy the contents of the old file into the new, enlarged file, or
simply to remake the VAM file.

We can illustrate the use of the VAM file and some new G7 commands for making some simple
calculations with the input-output table presented in section 1 of this chapter. In this example we
will assume that the IO data are for the year 2000. The box below shows the VAM.CFG file for this
model, which is called Tiny It and all the files used in this chapter are in TINY.ZIP. I suggest that
you make a folder, copy TINY.ZIP into it, and unzip it.

Figure 15.1.

The first line in VAM.CFG gives the beginning and ending years for the VAM file. The next line,
the one beginning with a #, is a comment to clarify the structure of the file. Comments beginning
with a # can be placed anywhere in the file. Next are the lines describing the vectors and matrices.
Each line shows the following:

1. The name of the vector or matrix.
2. Its number of rows.
3. Its number of columns.
4. The maximum number of lags with which a vector occurs in the model or a 'p' if the matrix is

a “packed matrix” – a device useful in large-scale models.
5. The name of a file containing the rows titles of a vector or matrix.

16

VAM.CFG for the Tiny Model
1995 2010
Vam file for Simplest Model
FM 8 8 0 sectors.ttl sectors.ttl #Input-output flow matrix
AM 8 8 0 sectors.ttl sectors.ttl #Input-output coefficient matrix
LINV 8 8 0 sectors.ttl sectors.ttl # Leontief inverse
out 8 1 3 sectors.ttl # Output
pce 8 1 0 sectors.ttl # Personal consumption expenditure
gov 8 1 0 sectors.ttl # Government spending
inv 8 1 0 sectors.ttl # Investment
ex 8 1 0 sectors.ttl # Exports
im 8 1 0 sectors.ttl # Imports
fd 8 1 0 sectors.ttl # Total final demand
dep 8 1 0 sectors.ttl # Depreciation
lab 8 1 0 sectors.ttl # Labor income
cap 8 1 0 sectors.ttl # Capital income
ind 8 1 0 sectors.ttl # Indirect taxes
depc 8 1 0 sectors.ttl # Depreciation coefficients
labc 8 1 0 sectors.ttl # Labor income coefficients
capc 8 1 0 sectors.ttl # Capital income coefficients
indc 8 1 0 sectors.ttl # Indirect taxes coefficients
pcec 8 1 0 sectors.ttl # Personal consumption shares
invc 8 1 0 sectors.ttl # Investment shares
govc 8 1 0 sectors.ttl # Gov shares
exc 8 1 0 sectors.ttl # Export shares
imc 8 1 0 sectors.ttl # Import shares
x 8 1 0 sectors.ttl # Working space
y 8 1 0 sectors.ttl # Working space

6. If applicable, the name of a file containing the columns titles of a matrix.
7. A # followed by a brief description of the element.

As far as the computer is concerned, these lines are free format; all that is needed is one or more
spaces between each item on a line. However, this is a file also read by humans, so putting in spaces
to make the items line up in neat columns is a good idea. Figure 15.1 shows the VAM.CFG file for
the Tiny model based on example of section 1 of the last chapter. (The VAM.CFG file on the zip file
has more vectors than shown here. The extra ones will be used in the next chapter and, in the
meanwhile, will do no harm.)

To create a vam file from a vam configuration file the command in G7 is

vamcreate <vam configuration file> <vam file>

For example, to create the vam file HIST.VAM from the configuration file VAM.CFG, the command
is

vamcreate vam.cfg hist

The “vamcreate” command may be abbreviated to “vamcr”, thus:

vamcr vam.cfg hist

At this point, the newly created vam file has zeroes for all its data. We will now see how to populate
the bank and work with the data. The first step is to assign it as a bank. The command is

vam <filename> <letter name of bank>

For example, we could assign HIST.VAM to the 'b' position by typing:

vam hist b

Letters 'a' through 'v' may be used to designate banks. However, it is generally a good practice to
leave 'a' as the G bank which was initially assigned.

In order to avoid continually entering the bank letter, most commands for working with VAM files
use the default VAM file. It is specified by the “dvam” command

dvam <letter name of bank>

For example, we can set the VAM file in position 'b' as the default by typing:

dvam b

A vam file must already be assigned as a bank before it can be made the default. However, if several
VAM files are assigned, the default can be switched from one to another as often as needed.

The usual ways to introduce data into a VAM file are with the “matin” command for matrices and
the “vmatdat” command for vectors. We can illustrate them with the data for Tiny from section 14.1.

17

Figure 15.2

The “matin” command on the first line is followed by the matrix name in VAM.CFG, then by the
year to which the matrix belongs, then the number of the first row and last row in the following
rectangle of data, then the number of the first column and last column in the rectangle. (In the
present case, the rectangle is the whole table; but this ability to read in a table rectangle-by-rectangle
is quite useful for reading tables scanned from printed pages.) The last number on the “matin” line is
the skip count, which specifies the number of characters to be skipped at the beginning of each line.
These characters usually give sector names or numbers. The # in the first position marks the second
line as a comment. Then come the data; each line is in free format after the initial skip. (Do not use
tabs in characters which are to be skipped; the tab character will be counted as just one character.)

The FD.dat file shown below in Figure 15.3 illustrates the introduction of vectors, in this case, the
final demands. The “vmatdat” command is rather flexible; it can introduce a number of vectors for
one year or one vector for a number of years. The vectors can be the rows or the columns in the
following rectangle of data. Because of this flexibility, we have to tell the command how to interpret
the rectangle of data. The command must therefore by followed by a 'c' or an 'r' to indicate whether
the vectors appear as columns or rows in the following rectangle of data. Here, the vectors are
clearly columns. The next number is the number of vectors in the rectangle; here 5. Next is the
number of years represented in the rectangle. Here it is 1, for the columns are different vectors for
the same year. (Either the number of vectors or the number of years must be 1.) The next two
numbers are the first and last element numbers of the data in the rectangle, and the last is the skip
count. Since this command is introducing several vectors for one year, that year is specified at the
beginning of the next line, and the names of the vectors follow it. (If we were introducing data for
one vector for several years, the vector name would be in the first position on this line, followed by
the year numbers.)

18

The Flows.dat File for Introducing the Input-Output Flow Matrix into the VAM File

matin FM 2000 1 8 1 8 15
Agricul Mining Elect Mfg Commerce Transp Services Govt
Agriculture 20 1 0 100 5 0 2 0
Mining 4 3 20 15 2 1 2 0
Electricity 6 4 10 40 20 10 25 0
Manufacturing 20 10 4 60 25 18 20 0
Commerce 2 1 1 10 2 3 6 0
Transportation 2 1 5 17 3 2 5 0
Services 6 3 8 45 20 5 20 0
Government 0 0 0 0 0 0 0 0

Figure 15.3. The FD.DAT File for Introducting the Final Demands into the VAM File

The value-added rows are introduced by the “vmatdat” command and data shown in the box below.
In this example, vectors are read in as rows.

Figure 15.4

Here, finally, are the G7 commands to create the VAM file and load the data into it:

tiny.pre – Create the VAM file for Tiny
vamcreate vam.cfg hist
vam hist b
dvam b
Bring in the intermediate flow matrix
add flows.dat
Bring in the final demand vectors
add fd.dat
Bring in the value added vectors
add va.dat

The complete set of commands for making the calculations described in this section are in the file
GMODEL.PRE, shown in figure 15.5. To fit this large file on a single page, some commands have
been doubled up on a single line but separated by a semicolon – a trick which works in G7 just as in
C++.

19

The VA.DAT File for Introducing the Value-added Vectors

vmatdata r 4 1 1 8 15
2000 dep lab cap ind
1 2 3 4 5 6 7 8
Depreciation 9 4 40 40 25 30 20 0
Labor 68 21 31 350 150 107 490 150
Capital 20 2 56 60 40 12 59 0
Indirect tax 8 0 20 50 109 10 18 0

vmatdata c 5 1 1 8 15
2000 pce gov inv ex im
PersCon Gov Invest Exports
Imports
Agriculture 15 1 0 40 -20
Mining 2 1 0 10 -10
Electricity 80 10 0 0 0
Manufacturing 400 80 200 120 -170
Commerce 350 10 6 10 0
Transportation 130 20 8 5 0
Services 500 40 10 30 -20
Government 0 150 0 0 0

Figure 15.5. Gmodel.pre File to Build a Tiny Model Using only G7, No Interdyme

20

zap; clear
bank tiny
vamcreate vam.cfg hist
vam hist b; dvam b
Bring in the intermediate flow matrix
add flows.dat
show b.FM y 2000
Bring in the final demand vectors
add fd.dat
Bring in the value added vectors
add va.dat
fdates 2000 2000
Add up the intermediate rows
getsum FM r out
Add on the final demand vectors to get total output
vc out = out+pce+gov+inv+ex+im
show b.out
Copy intermediate flows to AM and convert to coefficients
mcopy b.AM b.FM
coef AM out
vc depc = dep/out; vc labc = lab/out
vc capc = cap/out; vc indc = ind/out
Copy the 2000 coefficient matrices to all the other years
fdates 1995 2010
Copy the 2000 AM matrix into 1995 - 2010
dfreq 1
f one = 1.
index 2000 one AM
Demonstrate that AM has been copied by showing its first column.
show b.AM c 1
index 2000 one depc; index 2000 one labc
index 2000 one capc; index 2000 one indc
Move the four final demand columns by their totals
in the historical years, 1995 - 2003
fdates 1995 2003
index 2000 pcetot pce; index 2000 invtot inv ; index 2000 govtot gov
index 2000 extot ex; index 2000 imtot im
Extend the final demands from 2003 to 2010 using a
3 percent growth rate for all but inv and a wavy
pattern for it.
fdates 1995 2010
Create a time trend
f time = @cum(time,one,0)
f g03 = @exp(.03*(time-9))
ty g03
f waves = g03 + .3*@sin(time-9)
ty waves
fdates 2003 2010
index 2003 g03 pce; index 2003 waves inv; index 2003 g03 gov
index 2003 g03 ex; index 2003 g03 im
Take the Leontief inverse of the A matrix
fdates 1995 2010
mcopy b.LINV b.AM
linv LINV
show b.LINV y 2000
Add up the final demands
vc fd = pce+gov+inv+ex+im
show b.fd
Compute total outputs
vc out = LINV*fd
show b.out
Compute Value added
The following are element-by-element multiplication
vc dep = depc*out; vc lab = labc*out
vc cap = capc*out; vc ind = indc*out
gdates 1995 2003 2010
fadd graphs.fad sectors.ttl

Now let us look at some of the data we have introduced by displaying them in a grid on the screen.
The command

show FM y 2000

will show a spreadsheet-like grid containing the flow matrix (FM) for the year 2000. To adjust the
default column width and the number of decimal places in the display, click the Options menu item.
Not only does this display look like a spreadsheet, it also works like one in that you can copy and
paste data from one to the other.

To look at a row, say row 2, of the FM matrix for all years of the VAM file, the command is

show FM r 2

Similarly, to show column 5 for all years, the command is:

show FM c 5

Thus, in showing a matrix, we have to choose among showing the whole matrix for one year and
showing one row or column for all years. The choice is indicated by the letter – a 'y', 'r' or 'c' –
following the matrix name.

Showing vectors is simpler because we do not have to make this choice; we just name the vector and
get all values for all years. Here are two examples

show ind # Display the indirect tax vector
show b.pce # Display the personal consumption expenditure vector

The second of these examples illustrates that the “show” command allows us to specify a bank other
than the default VAM file.

Now that we have added the data and displayed it to check that it was accurately read, we can begin
to perform computations. To calculate the input-output coefficient matrix, we need out, the vector of
outputs by industry. It was not read in, but it can be computed by summing the rows of the FM
matrix and then adding to this row sum the final demand columns. Here are the two calculations and
the “show” command to view the result:

Add up the intermediate rows
getsum FM r out
Add on the final demand vectors to get total output
vc out = out+pce+gov+inv+ex+im
show b.out

We are now ready to copy the flow matrix, stored in FM, to AM and then convert it to input-output
coefficients by dividing each element of each column by the corresponding element of the out
vector. We copy the matrix with the “mcopy” command. The general form of the “mcopy”
command to copy matrix or vector A from bank x to element B in bank y is

mcopy y.B [=] x.A

The = sign is optional but is useful reminder of which way the copy is going. The y. is optional if y
is the default VAM file, and the same is true for the x.. Since this copy and these calculations need
be done only for one year, 2000, we first set the fdates so that the “mcopy” and “coef” commands
work only on the years from 2000 to 2000 (which is to say, only for 2000). Here are the commands

21

Copy intermediate flows to AM and convert to coefficients
fdates 2000 2000
mcopy b.AM = b.FM
coef AM out
show AM y 2000
Create value-added coefficient vectors.
vc depc = dep/out
vc labc = lab/out
vc capc = cap/out
vc indc = ind/out
Set fdates back to the entire range of the VAM file.
fdates 1995 2010

With the input-output coefficients calculated, we can now go on to illustrate finding the Leontief
inverse, calculating outputs from exogenous forecasts of final demands, calculating value-added
components, and displaying, graphing, and making tables of the results. We will first copy the input-
output coefficient matrix and the value-added coefficient vectors from 1995 to 2010. We can
conveniently do this with G7’s “index” command. This command is used to move all elements of a
vector or matrix in the default VAM file forward or backward in proportion to a guide series. Its
general form is:

index <base year> <guide series> <matrix or vector>

It operates over the range specified by the current fdates. Since we just want to copy the coefficients
to all the years, our guide series will be simply a series of 1's, which we shall call one. Here are the
commands

Copy the 2000 AM matrix into 1995 - 2010
dfreq 1
f one = 1.
index 2000 one AM
index 2000 one depc
index 2000 one labc
index 2000 one capc
index 2000 one indc
show AM c 1

The last command displays the first column of the AM matrix for all the years in a grid; all columns
of this display should, of course, be identical. For purposes of illustration, we will let AM remain
constant in all years.

The final demands, however, will move in a slightly more interesting way. Between 1995 and 2003,
the elements of each final demand column will follow the index of the total of that column as given
by the corresponding aggregate in the national accounts. Here are the G7 commands to make that
happen.

Move the four final demand columns from the 2000 value by their totals

22

in the historical years, 1995 - 2003
fdates 1995 2003
index 2000 pcetot pce
index 2000 invtot inv
index 2000 govtot gov
index 2000 extot ex
index 2000 imtot im

From the base of 2003, we will have all components of final demand except investment grow at a
steady 3 percent per year to 2010. Investment will also have one component growing at this same
rate but added to it – to make the results more interesting to view – will be a sine curve with a period
of 2π years. Here are the commands for this operation.

fdates 1995 2010
Create a time trend
f time = @cum(time,one,0)
f g03 = @exp(.03*(time-9))
f waves = g03 + .3*@sin(time-9)
fdates 2003 2010
index 2003 g03 pce
index 2003 waves inv
index 2003 g03 gov
index 2003 g03 ex
index 2003 g03 im

To add up the components of final demand to fd, we use the “vc” (for vector calculation) command.
It can add up any number of vectors to get a total. Here are the commands.

Add up the final demands
vc fd = pce+gov+inv+ex+im
show fd

We are now going to ignore the fact that the AM matrix is the same in all years – we could have
changed it had we wanted to – and take its Leontief inverse in all years in the fdates range. The
command

linv <square matrix> [year]

converts the square matrix into its Leontief inverse. For example,

linv A

converts A into (I −A)
−1 . We then multiply this inverse by the final demand vector to compute

the output vector. The “linv” command works over the fdate range unless the optional year
argument is present.

Take the Leontief inverse of the A matrix
mcopy LINV = AM
linv LINV
show LINV y 2000

23

Compute total outputs
vc out = LINV*fd
show b.out

With the outputs known, we can compute the implied value-added of each type by each industry
with the following commands. In them, the “vc” command will recognize that the dimensions of the
vectors on the right are such that element-by-element multiplication makes sense and perform the
calculation.

Compute Value added
The following are element-by-element multiplication
vc dep = depc*out
vc lab = labc*out
vc cap = capc*out
vc ind = indc*out
show lab

As we went along, we showed results in spreadsheet-like grids to check that our answers were
generally reasonable. Now we need to graph the results. In doing so, we use the fact that elements
of vectors in a VAM file can be referred to in G7 simply by the name of the vector followed by a
numeral. We can graph the second element of the out and pce vectors from the VAM file assigned as
bank 'b' with the graph command like this:

gr b.out2 b.pce2

If the VAM file is the default, we can omit the bank letter and period. Thus, in the instance just
given, we could just use the following command:

gr out2 pce2

This way of referring to a time series of elements of a vector works also for “type” and “r”
commands and for the right-hand side of “f” or “fex” commands. Similarly, we can refer to an
element of a matrix in a type, graph, or regression command or the right side of an “f” command.
Specifically, to retrieve an element of a matrix, type the matrix name followed by the row number,
followed by a dot, followed by the column number. For example,

type AM3.5

will print to the screen the values of the element in the third row and fifth column of the AM matrix.

We can get a lot more graphs very quickly by use of G7’s “fadd” command. The name “fadd” is a
contraction of “file-directed add command.” It works with text substitution in a way that is very
convenient in working with multisectoral models. The general form is

fadd <command file> <argument file>

In our case, the “command file” will be GRAPHS.FAD:

vr 0
ti %3 %5
subti Output and Final demand
gname out%3
gr b.out%3 b.fd%3

24

subti Depreciation,Labor income, Capital income, Indirect taxes
gname va%3
gr b.dep%3 b.lab%3 b.cap%3 b.ind%3
ti
subti

The argument file will be the same SECTORS.TTL file which we used for supplying row and
column titles for the matrices and vectors in the VAM file, namely:

Agricul ;1 e "Agriculture"
Mining ;2 e "Mining and quarrying"
Elect ;3 e "Electricity and gas"
Mfg ;4 e "Manufacturing"
Commerce ;5 e "Commerce"
Transport ;6 e "Transportation"
Services ;7 e "Services"
Government ;8 e "Government"

Note that some of the lines in the command file – for example, the second – have a % followed by a
number. These numbers refer to “arguments” from the “argument” file. For example, on the first
line of the argument file, argument 1 is Agricul, argument 2 is ;, argument 3 is 1, argument 4 is e ,
and argument 5 is Agriculture . Normally an argument is delimited by a space or punctuation.
Enclose arguments which contain spaces – such as the names of some sectors – in quotation marks.
When the second line of the command file,

ti %3 %5

is executed with the arguments 3 and 5 from the first line of the argument file replacing the %3 and
%5, the effect is that G7 executes the command

ti 1 Agriculture

The effect of the “fadd” command is that the entire command file is executed first with arguments
from the first line of the argument file, then with the arguments from the second line of the argument
file, and so on. Thus, with the single command

fadd graphs.fad sectors.ttl

G7 will draw graphs like the two shown below for Agriculture for all sectors.

25

1 Agriculture1 Agriculture
Output and Final demand

 167

 84

 0

1995 2000 2005 2010

 b.out1 b.fd1

1 Agriculture1 Agriculture
Depreciation, Labor income, Capital income, Indirect taxes

 68.0

 34.0

 0.0

1995 2000 2005 2010

 b.dep1 b.lab1 b.cap1 b.ind1

We have used some but not all of the G7 commands for matrix arithmetic in a VAM file. For
reference, here are some others.

minv A converts A into its inverse
madd A = B + C adds B and C and stores in A
madd A = B - C subtracts C from B and stores result in A
mmult A = B*C multiply B and C and store result in A
mmult A = B’C multiplies B transpose by C and stores result in A
mmult A = B&C does element-by-element multiplication of B and C and stores in A
mmult A = B/C element-by-element division of B by C stored in A
mtrans A B the transpose of B is stored in A

In all of them, the command may be followed by an optional year in which to do the calculation;
absent the year, the calculation is done for all years in the fdates range.

For tabulating the contents of a VAM file, we use exactly the same program, Compare, as we have
used for macro models. It has, however, some features used exclusively with vectors and matrices.
First of all, when we click Model | Tables on the G7 main menu, we need to choose “vam” as the
type of the first bank, then give “hist” as its name; in the “Stub file” control, fill in “tiny”, and in the
“Output file name” box type “tiny.out”.

Figure 15.6

The TINY.STB File

\dates 1995 2000 2005 2010 1995-2000 2000-2005 2005-2010
\pages off
\noformat
\title TINY G-ONLY MODEL, ILLUSTRATIVE FORECAST

; out Output of Industries
&
out1 ;1 Agriculture
out2 ;2 Mining and quarrying
out3 ;3 Electricity and gas
out4 ;4 Manufacturing
out5 ;5 Commerce
out6 ;6 Transportation
out7 ;7 Services
out8 ;8 Government
;
\add tiny.tab pce "Personal Consumption Expenditure"
;
\add tiny.tab gov "Government Expenditures"
;
\add tiny.tab inv "Investment by Supplying Industry"
;

The next line forces a new page
*
\matcfg Matlist.cfg
\center Matrix Listing
\row
\cutoff .001
\matlist 1-8

The first line with the “\dates” command is familiar from macro models. Since we want to bring the

26

results into a word processor for printing, I have turned off the page numbering and all commands to
the printer in the next two lines. The “\title” command gives a title to be printed across the top of
each page of output. As with macro stub files, a line beginning with a “;” just puts the rest of the line
in the output file, and a “&” command puts a line of dates across the page. The next eight lines print
the output and its growth rates for the eight industries of the Tiny model for the dates specified.

We have not previously used Compare’s “\add” command, which works just like G7’s “add”
command, including a feature of the “add” command which we have yet used, namely, that it accepts
arguments. The TINY.TAB file is shown in the box below. Instead of the lines in TINY.STB for
printing the output of industries, we could have used the single line

\add tiny.tab out “Output of Industries”

The effect would have been exactly the same.

Figure 15.7

The TINY.TAB is a bit confusing because of the strings “%11" , “%12", and similar strings below
them. To the eye, this may look like a reference to argument 11 or argument 12. But the computer
knows that there can be only nine arguments and thus the third character in these strings is not part
of the argument specification. It will read these as “argument 1 followed by the character 1" or
“argument 1 followed by the character 2.”

The results the tabulations described thus far are shown in Figure 15.8 below.

The last five lines of TINY.STB are concerned with making a matrix listing from the VAM file. A
matrix listing is best explained by looking at the results, which are shown for the first three
industries in the Figure 15.9 below. For each row of the input-output table, the matrix listing shows
each element of the identity:

output = intermediate demand + final demand.

Indeed, each element is shown for each year specified by the “\dates” command. Growth rates of the
element are shown for the periods specified by the same command. This matrix listing technique is
important not only for the information it displays, but also the consistency of the forecasts which it
emphasizes.

27

The TINY.TAB File

; %1 %2
&
%11 ;1 Agriculture
%12 ;2 Mining and quarrying
%13 ;3 Electricity and gas
%14 ;4 Manufacturing
%15 ;5 Commerce
%16 ;6 Transportation
%17 ;7 Services
%18 ;8 Government

Figure 15.8

28

 TINY G-ONLY MODEL, ILLUSTRATIVE FORECAST

 out Output of Industries
 1995 2000 2005 2010 95-00 00-05 05-10
1 Agriculture 140.7 164.0 189.6 216.7 3.1 2.9 2.7
2 Mining and quarrying 43.5 50.0 57.5 66.1 2.8 2.8 2.8
3 Electricity and gas 171.1 205.0 228.6 263.8 3.6 2.2 2.9
4 Manufacturing 663.0 787.0 908.3 1030.9 3.4 2.9 2.5
5 Commerce 331.0 401.0 439.9 510.0 3.8 1.9 3.0
6 Transportation 164.3 198.0 220.3 254.4 3.7 2.1 2.9
7 Services 555.8 667.0 738.2 854.7 3.6 2.0 2.9
8 Government 133.2 150.0 177.7 206.5 2.4 3.4 3.0

 pce Personal Consumption Expenditure
 1995 2000 2005 2010 95-00 00-05 05-10
1 Agriculture 12.4 15.0 16.3 19.0 3.9 1.7 3.0
2 Mining and quarrying 1.6 2.0 2.2 2.5 3.9 1.7 3.0
3 Electricity and gas 65.9 80.0 87.1 101.2 3.9 1.7 3.0
4 Manufacturing 329.7 400.0 435.7 506.2 3.9 1.7 3.0
5 Commerce 288.5 350.0 381.2 442.9 3.9 1.7 3.0
6 Transportation 107.2 130.0 141.6 164.5 3.9 1.7 3.0
7 Services 412.1 500.0 544.6 632.7 3.9 1.7 3.0
8 Government 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 gov Government Expenditures
 1995 2000 2005 2010 95-00 00-05 05-10
1 Agriculture 0.9 1.0 1.2 1.4 2.4 3.4 3.0
2 Mining and quarrying 0.9 1.0 1.2 1.4 2.4 3.4 3.0
3 Electricity and gas 8.9 10.0 11.8 13.8 2.4 3.4 3.0
4 Manufacturing 71.0 80.0 94.8 110.1 2.4 3.4 3.0
5 Commerce 8.9 10.0 11.8 13.8 2.4 3.4 3.0
6 Transportation 17.8 20.0 23.7 27.5 2.4 3.4 3.0
7 Services 35.5 40.0 47.4 55.1 2.4 3.4 3.0
8 Government 133.2 150.0 177.7 206.5 2.4 3.4 3.0

 inv Investment by supplying industry
 1995 2000 2005 2010 95-00 00-05 05-10
1 Agriculture 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2 Mining and quarrying 0.0 0.0 0.0 0.0 0.0 0.0 0.0
3 Electricity and gas 0.0 0.0 0.0 0.0 0.0 0.0 0.0
4 Manufacturing 147.2 200.0 240.2 257.5 6.1 3.7 1.4
5 Commerce 4.4 6.0 7.2 7.7 6.1 3.7 1.4
6 Transportation 5.9 8.0 9.6 10.3 6.1 3.7 1.4
7 Services 7.4 10.0 12.0 12.9 6.1 3.7 1.4
8 Government 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Figure 15.9

29

 TINY G-ONLY MODEL, ILLUSTRATIVE FORECAST

 Matrix Listing

 Seller: 1 Agriculture
 1995 2000 2005 2010 95-00 00-05 05-10
 Sales to Intermediate
 1 Agriculture 17.2 20.0 23.1 26.4 3.1 2.9 2.7
 2 Mining and quarrying 0.9 1.0 1.2 1.3 2.8 2.8 2.8
 4 Manufacturing 84.2 100.0 115.4 131.0 3.4 2.9 2.5
 5 Commerce 4.1 5.0 5.5 6.4 3.8 1.9 3.0
 7 Services 1.7 2.0 2.2 2.6 3.6 2.0 2.9
SUM: Intermediate 108.1 128.0 147.4 167.7 3.4 2.8 2.6
 Sales to Other Final Demand
Personal consumption expenditure 12.4 15.0 16.3 19.0 3.9 1.7 3.0
Government consumption 0.9 1.0 1.2 1.4 2.4 3.4 3.0
Exports 33.1 40.0 45.4 52.8 3.8 2.5 3.0
Imports -13.7 -20.0 -20.8 -24.1 7.6 0.8 3.0
Output 140.7 164.0 189.6 216.7 3.1 2.9 2.7

 Seller: 2 Mining and quarrying
 1995 2000 2005 2010 95-00 00-05 05-10
 Sales to Intermediate
 1 Agriculture 3.4 4.0 4.6 5.3 3.1 2.9 2.7
 2 Mining and quarrying 2.6 3.0 3.5 4.0 2.8 2.8 2.8
 3 Electricity and gas 16.7 20.0 22.3 25.7 3.6 2.2 2.9
 4 Manufacturing 12.6 15.0 17.3 19.6 3.4 2.9 2.5
 5 Commerce 1.7 2.0 2.2 2.5 3.8 1.9 3.0
 6 Transportation 0.8 1.0 1.1 1.3 3.7 2.1 2.9
 7 Services 1.7 2.0 2.2 2.6 3.6 2.0 2.9
SUM: Intermediate 39.5 47.0 53.2 61.0 3.5 2.5 2.7
 Sales to Other Final Demand
Personal consumption expenditure 1.6 2.0 2.2 2.5 3.9 1.7 3.0
Government consumption 0.9 1.0 1.2 1.4 2.4 3.4 3.0
Exports 8.3 10.0 11.4 13.2 3.8 2.5 3.0
Imports -6.8 -10.0 -10.4 -12.1 7.6 0.8 3.0
Output 43.5 50.0 57.5 66.1 2.8 2.8 2.8

 Seller: 3 Electricity and gas
 1995 2000 2005 2010 95-00 00-05 05-10
 Sales to Intermediate
 1 Agriculture 5.1 6.0 6.9 7.9 3.1 2.9 2.7
 2 Mining and quarrying 3.5 4.0 4.6 5.3 2.8 2.8 2.8
 3 Electricity and gas 8.3 10.0 11.1 12.9 3.6 2.2 2.9
 4 Manufacturing 33.7 40.0 46.2 52.4 3.4 2.9 2.5
 5 Commerce 16.5 20.0 21.9 25.4 3.8 1.9 3.0
 6 Transportation 8.3 10.0 11.1 12.8 3.7 2.1 2.9
 7 Services 20.8 25.0 27.7 32.0 3.6 2.0 2.9
SUM: Intermediate 96.3 115.0 129.6 148.8 3.5 2.4 2.8
 Sales to Other Final Demand
Personal consumption expenditure 65.9 80.0 87.1 101.2 3.9 1.7 3.0
Government consumption 8.9 10.0 11.8 13.8 2.4 3.4 3.0

Perhaps you are wondering how the Compare program knows what elements go into the identity and
what are the names of the sectors and final demands. The answer was given to the program in the
“matrix listing configuration file” whose name, MATLIST.CFG, was given to Compare in the
command

\matcfg matlist.cfg

The matrix listing configuration file to produce the matrix listing shown above is in the box below.

In the MATLIST.CFG file, any line beginning with a # is a comment and anything before the “ ; ” is
likewise a comment. The first line gives the crucial identity on which the matrix listing is built.
Recall that Compare has the VAM file and thus knows all the matrix and vector names and
dimensions. It knows how to correctly interpret the expression “AM*out.” The next line gives the
file name of the sector titles for the vector on the left. The following line provides the file names for
column titles of any matrices appearing in the identity. Here we have only one such matrix. Next
come headers for each section of the table, where a section is a vector or a matrix-vector product.

We return now to the TINY.STB file to explain the last four lines, namely

\center Matrix Listing
\row
\cutoff .001
\matlist 1-8

The “\center” command centers text on the page. The command “\row” tells Compare to interpret
the identity of the matlist configuration file as an identity in the rows. (The other possibility,
“\column”, would be used for showing the identity – that holds only in current prices – between the
value of the output of an industry and the sum of its intermediate inputs and value-added
components.) The “\cutoff” command eliminates the printing of entries which account for less than
the specified fraction of the total of the row or column being listed.

Finally, the “\matlist” command instructs Compare to make the matrix listing for the group of sectors
following the command. This is our first encounter with the group concept which is quite useful
when working with multisectoral models. A group is just a collection of integers; it can be specified
in a rather flexible way. Our specification, 1 - 8, means every sector from 1 to 8. An equivalent
specification would be 1 2 3 4 5 6 7 8. If we want just 1 to 3 and 6 to 8, we could write any of
following:

30

The MATLIST.CFG File for TINY

Matrix listing identity;out=AM*out+pce+gov+inv+ex+im
Title file name for the rows of out, the lefthand side vector
out; "sectors.ttl"
Title file names for matrix columns
AM; "sectors.ttl"
headers for each term
header for out; "Output"
header for AM*out; "Intermediate"
header for pce; "Personal consumption expenditure"
header for gov; "Government consumption"
header for inv; "Investment"
header for ex; "Exports"
header for im; "Imports"

1-3 6-8
1 2 3 6 7 8
1-8 (4 5)

The numbers in the parenthesis are omitted from the list created by the ranges to the left; the
parenthesis can also include ranges.

You may now want to ask, “Shouldn’t we connect personal consumption expenditure to labor and
capital income?” Of course we should, but to do so goes beyond what we can do in G7 alone. It
requires the Interdyme modeling system, which is similar to Build but for multisectoral models.
Everything we have covered in this section is directly relevant to working with Interdyme, but surely
you need to pause here and be sure that you have mastered the large amount of information we have
already covered.

What better exercise could there be than to build your own Tiny model? Please complete exercise 1
and the others to explore some other ideas.

Exercises
1. Make up the input-output table for your own imaginary economy in 2005. It should have

five to ten sectors, but not eight. Use different sector titles. Make forecasts to 2025. Graph
the forecasts and make tables of output and other vectors. Make a matrix listing.

2. For the economy of our example, what levels of output and use of primary imputs would be
required for the final demand (40, 6, 100, 600, 400, 170, 700, 148)?

3. How much of each of the four factors does one dollar of each of the final demands contain?

4. Was this economy a net exporter or importer of depreciation?

5. What would happen to the prices of each of the eight products if all indirect taxes were
eliminated?

6. Greenhouse gases are emitted by the production of the various sectors of our model
economy. Measured in tons per billion dollars of output, the emission coefficients for the
various sectors of our economy are

2.1 1.3 6.1 1.8 1.0 4.3 0.8 0.0

What is the emission of greenhouse gases per billion dollars of final demand for each of the
eight products? How much is attributable to a billion dollars of each of the types of final
demand -- consumption, government, etc.? Was this country a net exporter or importer of
greenhouse gas emissions?

7. The input-output flow table illustrated in the text was for year A. A comparable table for the
same country but for a later year, year B, may be found in the files YBF.DAT, YBX.DAT and
YBV.DAT in the TINY.ZIP file. (You have to fix up the correct commands to get the data
into G.) Price indexes for the eight sectors from year A to B are given by the vector

(1.01 1.10 1.06 1.07 1.15 1.24 1.18 1.20),
while the cost of labor increased twenty percent between the two years. (The price indexes
are in the file PINDEX.DAT.) What has happened between the two years to total labor
requirements for producing one unit of final demand for each product?

31

8. Return to exercise 7 but now consider that the depreciation and capital income are produced
with material inputs in the proportions given by the investment vector of the year in question.
Ignore the indirect taxes and imports. The reciprocals of the labor requirements are
productivity indexes for the economy in producing the various products supplied to final
demand.

Exercises 7 and 8 illustrate correct ways of studying productivity of the economy in making
various final products. As we noted in section 14.1, it is impossible to know what has
happened to productivity in a single industry, because the industry may have reduced its
primary inputs while increasing its intermediate inputs; and the double-deflation method,
supposed to handle this problem, is totally fallacious. The same problem does not arise in
looking at total labor required, indirectly as well as directly, for the production of each unit
delivered to final demand, for if the direct supplier to final demand has shifted required labor
to other industries by buying more intermediate goods, that indirect labor will be
automatically picked up. Thus, input-output calculations may offer a way of studying trends
in productivity by product which elude methods which do not take into account indirect
effects.

9. Read the G7 help file for the “lint” command. Specify different (but consistent) values of the
AM matrix, value-added coefficient vectors, and final demand vector shares for 1995 and
2010, use the “lint” command to interpolate values for other years, and repeat the
calculations of the text with these time-varying coefficients. Consistent here means that the
final-demand share columns sum to 1.0 and the sum of each column of AM plus the sum of
the value-added shares in the same industry equals 1.0. Thus, these calculations are, in
essence, in current prices, not constant prices.

32

15.2. Iterative Solutions of Input-output Equations

Before moving on to the Interdyme software, we must explain one of the mathematical techniques it
uses extensively, namely the Seidel iterative solution of the input-output equations. In actual input-
output computations, the Leontief inverse is seldom used, for the equations q=Aq+ f or

p= pA+v can be solved directly from the A matrix in about the same time required to multiply
(I −A)

−1 by f or v. Thus, the effort of calculating (I −A)
−1 would be pointless. Moreover, for

large matrices, many cells of A are zero. This fact can be exploited to reduce the computer storage
required for the matrix. But the Leontief inverse will have non-zeroes nearly everywhere, so there is
no way to reduce the space required for it. Further, changes to A are easily recorded and applied, but
a change of one element in A can easily change all the elements in the inverse. Thus, from the point
of view of solving the equations, nothing is gained and a good deal lost by computing the inverse.

How to solve the equations without the use of the inverse is the subject of this section. We will
explain two methods of successive approximation, for it is worth knowing that both work even
though we mainly use the second. The first, the simple iterative method, takes as a first
approximation of q, q0= f . Then, given the nth approximation, qn , the next approximation is

qn+1
=Aqn

+ f (15.2.1)

If the process converges so that one q is indistinguishable from the previous one, then the vector to
which it has converged is clearly the solution of the equation. In economic terms, we first set the
output equal to the final demands. Then we increase it to allow for the intermediate goods needed by
the first approximation and then increase it again for the intermediate goods needed for the second
approximation, and so on.

It is clear from equation (15.2.1) that if the matrix A is non-negative and f is non-negative, then no
element of q ever becomes negative in the course of the iterations. Thus, the conditions on A that
insure the convergence also insure that a non-negative f leads to a non-negative q. Thus, our inquiry,
initially motivated by considerations of practical computation, also provides an answer to the
theoretical question of whether an economy could exist with a given f and A, for the economic
interpretation of Aq is dependent on all elements of q being non-negative.

The second method, the Seidel process, takes the same first approximation, and then, to get the
second approximation, solves first the first equation for q1, given all the other elements of q. Then,
using this new value of q1 and the old values of q3, q4, etc., solve the second equation for q2, and so
on. If the A matrix is triangular, that is, if all the entries above the main diagonal are zero, this
method gives the right answer with one iteration. If it is not triangular, the whole process is repeated
until little or no change occurs with each new iteration. While no actual input-output matrix is ever
exactly triangular, the sectors can often be taken in an order which makes the matrix almost
triangular, and this near triangularity speeds the convergence process.

Instead of starting this process with the final demands, it is also possible to start with any guess of q.
In dynamic models, a good guess, namely the previous year's q is available. With a good starting
point, four or five iterations of the Seidel process is usually sufficient to produce adequately accurate
solutions. If twenty percent of the elements of A are non-zero -- a fairly typical situation -- we can
make five iterations of the Seidel process in the same time which would be required to multiply f by
the inverse if we had it.

If A is not an input-output matrix but just any old matrix you happen to meet on the street, there is

33

not much chance that either of these methods will converge and give a solution. What then makes us
so sure that they will converge for an input-output matrix? To discuss convergence, we need to be
able to say how far apart two vectors are. The concept of the norm of a vector gives us that ability.
We even need to be able to say how far a given vector is from the solution when we do not know
what the solution is. The concept of the norm of a matrix enables us to turn that trick. We will now
explain these two concepts.

We can say how far apart two vectors are if we can say how "long" a vector x is, that is, how long the
line is which connects x with the origin or zero point. For if ∥x∥ represents the length of any
vector, then the length of the difference of two vectors a and b, ∥a−b∥ , serves as a measure of
how far apart they are. How shall we measure the length of a vector? In two dimensions, the usual
length of the vector (x1, x2) is √ x1

2+ x2
2 . This concept of length readily generalizes to vectors of

any dimension by the definition ∥x∥=√ x ' x . This formula, called the Euclidean length (or
norm), gives one possible way of measuring length.

Why, however, do we bother to take the square root in the Euclidean norm? Because we certainly
want any way of calculating the length of x to be such that multiplying each element of x by a scalar,
λ , multiplies the length of x by the absolute value of λ :

(a) ∥λ x∥=∣λ∣∥x∥

Other properties which any definition of length should have are:

(b) ∥0∥=0 and ∥x∥>0 if x≠0

and

(c) ∥x+ y∥≤∥x∥+∥y∥

Property (c) expresses the requirement that the shortest distance between any two points must be a
straight line. Let us denote the points by x and -y. Then we must have

∥x−(− y)∥≤∥x∥+∥−y∥

since ∥x∥ is the distance from x to 0 (the origin of the vector space) and ∥− y∥ is the distance
for 0 to -y, while ∥x−(− y)∥ is the distance directly from x to -y. By applying property (a) to the
second term on the right, this requirement may be written more simply as (c) above.

Any way of assigning a number, ∥x∥ , to each vector, x, of the vector space in such a way that (a),
(b), and (c) are satisfied is called a norm of the space, and ∥x∥ is read "the norm of x". It is quite
remarkable that we can often prove the convergence of a process in terms of a norm without
knowing exactly which norm we are using. Besides the Euclidean norm, there are two more
important examples of norms:

the l-norm: ∥x∥=∑
i=1

n

∣xi∣

the m-norm: ∥x∥=max i∣x i∣

You may easily verify that each of these norms has the required three properties, though the values
they give as the norm of a given vector may be quite different. For example, the vector (1, -3, 2) has
a Euclidean norm of 3.74, while its l-norm is 6 and its m-norm is 3. (The l in l-norm refers to Henri
Lebesgue, a French mathematician of the early years of the twentieth century.)

34

Exercise 9: Draw the unit circle for each of these three norms. (The unit circle is the locus of points
with norm 1.)

With each of these three norms, if xk , for k = 0, 1, 2, etc., is a sequence of vectors and x* is a
vector such that

lim
k →∞

∥x k
−x*

∥=0

then

lim
k →∞

xk
=x*

.

That is, convergence of a sequence of vectors in norm implies element-by-element convergence.
This property is easily seen for the examples of the three norms and is a characteristic of finite
dimensional vector spaces.

What we now want to show is that if q* is a solution of the input-output equations, so that if

q*
=Aq*

+ f (15.2.2)

then the sequence q0, q1, q2, ... defined by

qk+1
=Aqk

+ f (15.2.3)

converges in norm to q*. Subtracting the first equation, (15.2.2), from the second, (15.2.3), gives

qk+1
−q*

=A(qk
−q*

) , k=1,2,3 ... (15.2.4)

If we have computed to iteration m, then setting k = m in this equation gives
qm+1

−q*
=A(qm

−q*
)

But setting k = m+1 in (15.2.4) gives

qm+2−q*=A(qm+1−q*)

Together the last two equations imply

qm+2
−q*

=A(qm+1
−q*

)=A2
(qm

−q*
)

For any positive integer, p, similar reasoning applied p times gives

qm+p
−q*

=A p
(qm

−q*
) (15.2.5)

We would like to be able to show that the norm of the vector on the left of (15.2.5) goes to zero as p
goes to infinity. T o do so, we need to extend the concept of norm to matrices. We introduce that
extension by a question:

Is there a number, call it ∥A∥ , such that

∥Ax∥≤∥A∥ ∥x∥ (15.2.6)

for all x?

There are indeed such numbers, and we call the least of them (for any norm of the vectors) the norm

35

of A. Intuitively speaking, the norm of the matrix A is the greatest "stretch" which multiplication by
A performs on any vector. For the l-norm and m-norms of the vectors, the corresponding norms of a
matrix are easily computed, as we shall see in a moment. Note that the norms of matrices also have
the three same basic properties of the norms of vectors:

a) ∥A∥=0 if and only if A=0 .

b) ∥λ A∥=∣λ∣∥A∥

c) ∥A+B∥≤∥A∥+∥B∥

plus a fourth, which can be easily verified from the definition

d) ∥AB∥≤∥A∥∥B∥

For the l-norm and m-norms of the vectors, the corresponding norms of a matrix are easilty
computed, as we shall see in a moment. First, however, note that we can apply this inequality
repeatedly to equation (15.2.5). After applying it p times, we have

∥qm+ p
−q*

∥=∥A∥
p
∥qm

−q*
∥

If we can show that ∥A∥<1 for some norm, then for that norm

∥A∥p →0 as p→∞

and therefore qk
→q* as k →∞ and the iterative calculations converge to the solution.

The norm of the n-by-n matrix A induced by the m-norm of vectors, and therefore called the m-norm
of the matrix, is the maximum row sum, namely:

∥A∥m=maxi∑
j=1

n

∣aij∣

while the norm of A induced by the l-norm of vectors, and therefore called the l-norm of the matrix,
is the maximum column sum, namely,

∥A∥l=max j∑
i=1

n

∣a ij∣

We shall prove the formula for the l-norm, and leave that for the m-norm as an exercise. (The
Euclidean norm of A is more complicated and not of immediate concern to us. It is the largest
characteristic root of A′A.) For the l-norm proof, let

α=max j∑
i=1

n

∣a ij∣

Then ∥A∥l≤α because, for any x,

∥Ax∥l=∑
i=1

n

∣∑
j=1

n

a ij x j∣≤∑
i
∑

j

∣a ij∣∣x j∣=∑
j

∣x j∣∑
i

∣aij∣≤∑
j

∣x j∣α=α∥x∥l

On the other hand, let k be the number of the column with the largest sum of absolute values, so that

α=∑
i=1

n

∣a ik∣

and then choose a vector, x, with xk=1 and x j=0 for all j≠k . Then ∥x∥l=1 and

36

∥Ax∥l=∑
i

∣∑
j

a ij x j∣=∑
i

∣a ik∣=α=α∥x∥l

Therefore, ∥A∥l≥α . But we have already shown the opposite inequality, so the only possibility
is that ∥A∥l=α .

If an input-output A matrix comes from an observed economy with a positive value-added in every
industry, then the column sums of every column are less than 1 and therefore the l-norm of the
matrix is less than 1. Thus, returning to the iterative solution of the input-output equations, we see
that it will indeed converge if such is the source of A. Furthermore, in that case, (I −A)

−1 will be
non-negative, because if we start from an f vector which is all zero except for a 1 in some position,
the resulting solution will never have any opportunity to acquire any negative elements in the course
of the iterative process. But the columns of (I −A)

−1 are precisely the solutions of such
equations, so the whole matrix is non-negative.

The norm of the A matrix not only allows us to be sure that the iterative process converges, it also
allows us to set an upper bound on how far we are from the solution at any stage. If, as before,

qk indicates approximation k, then

qk+ p
−qk

=qk+1
−qk

+qk+ 2
−qk+1

+...+qk+ p
−qk+ p−1 (15.2.7)

But since

qm+1
=Aqm

+ f and qm
=Aqm−1

+ f

for any positive integer m, subtraction of the second equation from the first gives

qm+1−qm=A(qm−qm−1)

Repeatedly applying this equation gives

qk+1
−qk

= A(qk
−qk−1

)

qk+2−qk+1 = A2(qk−qk−1)

⋯

qk+ p
−qk +p−1

= Ap
(qk

−qk −1
)

and substitution in the above equation (15.2.7) gives

qk+ p
−qk

=(A+A2
+A3

+...+Ap
)(qk

−qk−1
)

Taking the norms of both sides and applying properties (c) and (d) of the norms of matrices gives

∥qk + p
−qk

∥ ≤ ∥A+A2
+A3

+...+A p
∥ ∥qk

−qk−1
∥

≤ ∥A∥+∥A∥2
+∥A∥

3
+...+∥A∥

p
∥qk

−qk−1
∥

Now as p → ∞, qk+ p → q* and the sum of the geometric progression on the right goes to
∥A∥/(1−∥A∥) because ∥A∥<1 . Thus, when we have reached iteration k, we know that the

distance to the true solution is less than ∥qk
−qk−1

∥∥A∥/(1−∥A∥) . In other words, when the
differences of the successive approximations get small, we can be sure that we are close to the true
solution.

Now suppose for a moment that A is a matrix in physical units -- with coefficients in units like
kilowatt hours per pound -- so that column sums are meaningless and the l-norm perhaps much
greater than 1. Further let w be an all-positive vector of the hours of labor -- the only primary input

37

-- required per physical unit of output in each industry. Can an economy exist with this technology?
In other words, if the vector f of final demands is all positive, will the vector of outputs, q, such that
q = Aq + f also be all positive? (Mathematically, it is quite possible for some element of q to be
negative, but it is economic nonsense to run an industry at a negative level. Coal can be converted
into electricity, but all the electricity in the world can’t make a ton of coal.)

The answer to these questions lies in the solution of p= pA+w (where p is a row vector). If p is
all positive, then it can be thought of as a vector of prices (with an hour of work as the numeraire) at
which each process has a positive value added. If we now change the units of measurement of
output of each product to one “hour’s worth,” the coefficient matrix, say A*, in these new units
corresponding to A in the old units will have columns whose sums are each less than 1. Thus, in
these units, the iterative procedure will converge. But the iterative procedure in the original units
(with A) would give successive approximations which differ from those with A* only in their units.
Hence the process would converge in the original units as well and will be non-negative. Since the
Leontief inverse is non-negative, any vector of non-negative final demands can be met by non-
negative levels of output of all the industries.

15.3. The Seidel Method and Triangulation

As mentioned at the outset of the previous section, there is a variation of the iterative method, known
as the Seidel method, which converges even faster. In it, one starts with f as the initial guess of the
solution just as in the simple iterative method, but then solves the first equation for the first variable
and puts this value into the guess, then solves the second equation for the second variable and puts
that value into the guess, and so on. Formally,

q i
(k +1)=∑

j=1

i−1

a ij x j
(k +1)+ ∑

j=i+1

n

a ij x j
(k)+ f i /(1−a ii)

In input-output work, the f vector is generally non-negative as are the elements of the A matrix.
Hence, in the simple iterative method, the approximate solutions form a monotonically increasing
sequence of vectors. The Seidel approximate solutions are also monotonically increasing but are
always larger than the corresponding simple iterative solution. Hence, they also converge to the
solution and do so faster than does the simple iterative method.

If all the non-zero elements of A are on or below the main diagonal, A is said to be triangular. If A is
triangular, one pass of the Seidel process is sufficient to reach the exact solution. If A is merely
almost triangular, a few iterations will suffice for a good solution. It general, input-output matrices
arrive from the statistical offices more or less triangulated in exactly the wrong way. They start with
Agriculture first, later Textiles, then Apparel. The right order for a fast Seidel solution is the reverse,
Apparel, Textiles, Agriculture. It is not, however, necessary to physically re-arrange the rows and
columns. All that is necessary is to take the rows in the Seidel operation in the order that would
make the matrix nearly triangular.

For large matrices, however, it may be convenient to have a mechanical way to generate an
approximately triangular order. A simple but effective is to pick as the first industry the one which
has the smallest ratio of intermediate to final demand in its row. Then move into final demand all
the inputs into this industry and again pick from the remaining sectors the one with the lowest ratio
of intermediate to final in its row. Continue until all industries have been selected.

38

Solving input-output equations by the Seidel method is not only generally much faster than inverting
the I −A matrix by Gauss-Jordan reduction, it may even be faster than multiplying (I −A)

−1
by f when (I −A)

−1 is already known. How can that be? It is common for the A matrix to be
quite sparse. A 300-by-300 matrix may have some 9,000 non-zero elements, not 90,000. It can be
stored in a “packed” form in which only non-zero elements are stored, and the Seidel algorithm can
be written to use this packed form, so that only as many multiplications and additions are required
per iteration as there are non-zero elements. Thus, if the Seidel process requires less than ten
iterations in our example, it will require less than 90,000 multiplications and additions. The Leontief
inverse, however, will generally have 90,000 non-zeroes and thus multiplying it by f involves exactly
90,000 multiplications and additions. To economize on both space and solution time, large, sparse
matrices are thus best stored in a packed form; and equations involving them should be solved by the
Seidel process without ever inverting the matrix.

Exercises

10. Using C, C++, Fortran, Basic or any programming language you know, write a program to
compute the triangular order of a matrix. Apply it to the flow matrix used as an example in
this chapter. Write the results as a vector of integers, the first being the number of the
equation to be taken first; the second, that of the equation to be taken second, etc.

11. Write a program to use the Seidel method to solve input-output equations, taking the
equations in the order specified by the vector produced in exercise 7. Apply the program to
solve exercise 1 earlier in this chapter. (Bump has a Seidel method. Try to create yours
without looking at it.)

39

40

CHAPTER 16. BUILDING MULTISECTORAL MODELS WITH INTERDYME

16.1. Introduction to Interdyme

In section 15.1, we became acquainted with the VAM file and saw that G7 could do a number of
calculations with the matrices and vectors in these files. By the end, however, we came up against
the limits of building models in G7 by itself. To integrate regression equations and input-output we
proceed to Interdyme. Interdyme makes use of the Seidel process for solving the input-output
equations, so we had to explain that before getting into Interdyme itself. Starting in this section, we
will build several successive versions of the Tiny model in Interdyme. We will being in this section
with the version called “Model 1”.

Interdyme is a collection of C++ programs which make it easy to construct interindustry dynamic
models involving regression equations, input-output computations with matrix algebra, and lag
relationships that provide dynamics. In this section, we will introduce Interdyme by building a
simple Interdyme model of Tiny with just one regression equation and rudimentary institutional
accounts.

We are going to assume that the historical period for which we have data extends up through 2003
and that the forecast period will be 2004 – 2010. At this point, the HIST.VAM has been worked with
considerably and may have things in it which would prove confusing, so we will rebuild it from
scratch in G7 by doing

add tiny.pre

where TINY.PRE is the file shown in the box on the next page. This file will fill in all the matrices
and vectors for the historical period, but in the forecast period only the coefficients are filled in, not
the input-output flows. In particular, output is not calculated in the forecast period. Thus, if – after
Interdyme has been run – we find data for industry output in the forecast period, we can be sure that
it was calculated by Interdyme.

Regression Equations and Accounting Identities

We can conveniently begin with the most familiar part, the regression equation and the accounting
identities. The regression equation is estimated in G7 by the following command

add invtot.reg

where invtot.reg is the following file
catch invtot.cat # Open up the catch file
save invtot.sav # Open up the save file
ti TINY investment equation # Title for regression or graph
dfreq 1 # Set default frequency to 1 (annual)
f ub20 = @cum(ub20,1.,.20) # Form a “unit bucket” for capital stocks
f capstk = @cum(invcum, invtot[1], .20)/ub20 # Calculate capital stock
f delGDP = gdp – gdp[1] # First difference of GDP
con 2000 1.03 = a1 # Soft constraint for regression
lim 1982 2003 # limit of the regression
r invtot = ! capstk, delGDP[1], delGDP[2] # regression with no constant term
save off # close the save file

41

The TINY.PRE File

42

tiny.pre - File to create VAM file for Interdyme TINY
vamcreate vam.cfg hist
vam hist b
dvam b
Bring in the intermediate flow matrix
add flows.dat
Bring in the final demand vectors
add fd.dat
Bring in the value added vectors
add va.dat
fdates 2000 2000
Add up the intermediate rows
getsum FM r out
Add on the final demand vectors to get total output
vc out = out+pce+gov+inv+ex+im
Copy intermediate flows to AM and convert to coefficients
mcopy b.AM b.FM
coef AM out
The following are element-by-element vector divisions
vc depc = dep/out; vc labc = lab/out; vc capc = cap/out; vc indc = ind/out
Compute share vectors of final demands
vc pcec = pce/pcetot{2000}; vc invc = inv/invtot{2000}
vc govc = gov/govtot{2000}; vc exc = ex/extot{2000}
vc imc = im/imtot{2000}
fdates 1995 2010
Copy the 2000 AM matrix into 1995 - 2010
dfreq 1
f one = 1.0
index 2000 one AM;
Create a time trend
f time = @cum(time,one,0)
Move the five final demand columns by their totals in the historical
years, 1995-2003
fdates 1995 2003
index 2000 pcetot pce; index 2000 invtot inv; index 2000 govtot ov
index 2000 extot ex; index 2000 imtot im
Keep value added and final demand coefficients constant
fdates 1995 2010
f one = 1.
index 2000 one depc; index 2000 one labc
index 2000 one capc; index 2000 one indc
index 2000 one pcec; index 2000 one invc; index 2000 one govc;
index 2000 one exc; index 2000 one imc
The remaining calculations are done for the historical period
1995 - 2003 only
Take the Leontief inverse of the A matrix
fdates 1995 2003
mcopy b.LINV b.AM
linv LINV
Add up the final demands
vc fd = pce+gov+inv+ex+im
Compute total outputs
vc out = LINV*fd
Computer value-added flows
vc dep=depc*out; vc lab=labc*out; vc cap=capc*out; vc ind=indc*out
store
close b
We should now have outputs and final demands in the historical period, but only coefficients in the forecast period.

gr * # Graph of the regression fit
catch off # Close the catch file

with the following results (from the catch file)
: TINY investment equation
 SEE = 13.51 RSQ = 0.8360 RHO = 0.60 Obser = 22 from 1982.000
 SEE+1 = 11.45 RBSQ = 0.8187 DW = 0.79 DoFree = 19 to 2003.000
 MAPE = 7.24
 Variable name Reg-Coef Mexval Elas NorRes Mean Beta
 0 invtot - - - - - - - - - - - - - - - - - 161.06 - - -
 1 capstk 0.99562 402.8 0.89 1.52 144.50
 2 delGDP[1] 0.35900 17.0 0.11 1.00 47.67 0.231
 3 delGDP[2] 0.03007 0.1 0.01 1.00 47.06 0.020

The national accounts are given by the file ACCOUNT.SAV as follows:
The Accountant for Tiny
Personal interest and dividends
fex pintdivrat = pintdiv/capinc
f pintdiv = pintdivrat*capinc
Personal income
f pi = labinc + pintdiv + pgovtran
Personal taxes
fex ptaxrat = ptax/pi
f ptax = ptaxrat*pi
Personal disposable income
f pdisinc = pi - ptax
Personal saving
fex psavrat = psav/pdisinc
f psav = psavrat*pdisinc
f pcetot = pdisinc - psav
Government income
f ginc = indtax + ptax
Government saving
f gsav = ginc - govtot - pgovtran
Business saving
f bsav = capinc - pintdiv - invtot
RoW saving
f RoWsav = imtot – extot

All of this file should be familiar from the Master file of macromodels and the previous discussion
of the Institutional accounts in this chapter.

IdBuild, the Interdyme Version of the Build Program

Both of these .SAV files will be passed through the IdBuild program, the Interdyme version of the
Build program. It is much easier to run IdBuild than to explain what all it does. Basically, IdBuild
converts the G7-estimated parts of the model into C++ code. Clicking Model | IdBuild not only runs
IdBuild but also compiles the C++ code it has written and combines it with the other C++ modules
of the Interdyme system to make an executable program. Thus, running IdBuild just requires two
mouse clicks. Recounting what it does will take us a little longer, but some understanding of the
results is necessary to play your creative role in writing MODEL.CPP that pulls together the pieces

43

of the Interdyme system.

First, we must note that IdBuild is not so omniscient as Build and needs our help on one point. Build
knows about all the variables and equations in the macromodel it is building. Therefore, it can
arrange for getting all of them into the model, can figure out which ones are endogenous, and can
write a file for making quick projections of all those which remain exogenous. Because part of an
Interdyme model may be written directly in C++ without going through IdBuild, IdBuild does not
necessarily know about all the variables in the model and does not know about the possible
definition of some variables in the C++ code. A file called PSEUDO.SAV is used to inform IdBuild
of the variables which are used in the C++ code or otherwise needed in the data bank produced by
IdBuild but not used in any of the .SAV files processed by IdBuild. In Tiny, there is only one
variable of this sort, timet, which is used in the regressions for projecting exogenous variables. The
second function of the PSEUDO.SAV file is to tell IdBuild which variables will be defined in the C+
+ code and therefore do not need regressions in EXOGALL.REG to make quick, mechanical
projections. In Tiny, there are five such variables, as we shall see below, called gdp, deprec, labinc,
capinc, and indtax. Here is the PSEUDO.SAV file for Tiny:

PSEUDO.SAV file for TINY
Time
f timet = timet
GDP Gross domestic product
f gdp = gdp
Depreciation income
f deprec = deprec
Capital income
f capinc = capinc
Labor income
f labinc = labinc
Indirect taxes
f indtax = indtax

With these files in place, we are ready to look at the MASTER file, which is just the following:
Master File for TINY
iadd invtot.sav
iadd account.sav
iadd pseudo.sav
end

The only commands in the Master file for IdBuild are comments, “iadd” commands to bring in the
various .SAV files, and the end command to signal the end of the commands.

IdBuild requires a configuration file called BUILD.CFG. In it, I recommend that you make the
name of the workspace bank HIST, which is the way the file is supplied.

Once these files are ready, IdBuild can then be run. I would suggest that, for the moment, you do so
from within G7 by the command

dos c:\pdg\idbuild master

Later, when you have written the MODEL.CPP file, you can run IdBuild and compile and link
MODEL.CPP and other parts of the Interdyme program by clicking Model | IdBuild. We will get to

44

that point soon. Right now we should have a quick look at the output of IdBuild. It is reminiscent of
that of Build. The EXOGALL.REG file, for example, begins as:

bank hist b
mode f
tdates <StartType> <EndType>
limits <StartReg> <EndReg> <EndForecast>
ti govtot
r b.govtot = timet
gr *
f govtot = depvar
save govtot.xog
sty govtot
save off

As with a macromodel, areas marked with the <...> in the third and fourth lines must be replaced by
dates and the file then passed through G7 to generate for each variable a .XOG file with exogenous
forecast for each of the exogenous variables. The file RUN.XOG will contain an “add” command
for each of these files. For Tiny, RUN.XOG is

dos copy hist.* base.*
wsb base
add pintdivrat.xog
add pgovtran.xog
add ptaxrat.xog
add psavrat.xot
add govtot.xog
add extot.xog
add imtot.xog
add pgovtran.xog
add pintdivrat.xog
add ptaxrat.xog
add psavrat.xog
wsb ws
[possibly also lines, not needed in TINY, to project exogenous vectors in
the vam file, like this:
vam base b
dvam b
vmatdat …
]

Note the effect of the first two and the last commands when executed in G7. As noted above, HIST
is the recommended name (specified in BUILD.CFG) for the workspace bank generated by IdBuild.
The first command above copies this G bank and VAM file to a G bank and VAM file with the name
BASE. The second line makes this bank the workspace bank of G7. The subsequent lines add the
files with the projections of all the exogenous variables. These projections go into the G workspace
bank, namely, into BASE. The “wsb ws” command makes WS the workspace bank of G7 and
thereby frees the BASE bank. As in the case of macromodels, you should check the mechanical
exogenous projections, shape them to your preferences, and put revised versions into files with the
extension .XG, and make a revised RUN.XOG, calling it something like BASE.XG. For the
moment, we will let well enough alone and just use RUN.XOG with the mechanically generated
projections. This would also be the appropriate place to put into BASE.VAM the forecasts of any

45

exogenous vectors or matrices not already projected by running TINY.PRE. (In Tiny, there are no
such vectors or matrices.) Remember, however, that if you make any changes to RUN.XOG you
should change the name to RUN.XG or something more descriptive. Otherwise, the next time
IdBuild is run, your carefully prepared RUN.XOG will be overwritten.

Like Build, IdBuild also writes RUN.GR, a command file for G7 which will graph all timeseries
variables handled through IdBuild.

Running IdBuild generates a number of other files to facilitate the writing of the C++ program to run
the model. One of these is TSERIES.INC as follows:

GLOBAL Tseries ub20, invtot, invcum, capstk, gdp, delGDP, pintdivrat,
capinc, pintdiv, labinc, pgovtran, pi, ptaxrat, ptax, pdisinc, psavrat,
psav, pcetot, indtax, ginc, govtot, gsav, deprec, bsav,
imtot, extot, RoWsav, timet;

This is just a listing of all the macro variables in the model in a format suitable for use in the model.

Like Build, IdBuild also writes a file of C++ code called HEART.CPP. It is shown in the box on the
next page, in somewhat abbreviated form, for Tiny. Wherever four dots occur, thus , lines have
been omitted which just repeat for the other variables listed above in TSERIES.INC the same
function above and below the four dots for invtot and ginc. The Master file had the two following
lines:

iadd invtot.sav
iadd account.sav

Each of these resulted in a corresponding function of C++ code in the HEART.CPP file, namely
invtotf() and accountf(), respectively. These are functions which can be called from MODEL.CPP,
the user-written part of Interdyme system. The function name is created by adding an 'f' to the end
of the name of the file. A glance at accountf() shows that it is just an adaptation for C++ of the G
commands in ACCOUNT.SAV. The function invtotf() is the same for INVTOT.SAV with the extra
feature that the numerical values of the regression coefficients have been stripped off and put in a
separate file, HEART.DAT, which will automatically be read to supply values to the coef variable.
The regression coefficients are treated this way so that they can potentially be varied when
optimizing the fit of the model, just as was done with macromodels. IdBuild recognizes the special
function of the line

iadd pseudo.sav

in the MASTER file and does not generate a corresponding function in HEART.CPP.

Also in the HEART.CPP file are the C++ functions tserin() and uptseries(). The first of these reads
in the historical values and exogenous projections of the time series variables; it is executed at the
beginning of any run of the model. The second, uptseries(), is called at the beginning of the
calculation of the forecast for any year. It looks at the starting value of each of the time series
variables and if it is -.000001, the value G7 uses to indicate a missing value, then it replaces that
missing value with the value of the series in the previous year. For example, in Tiny, no exogenous
projection is made for Personal income, since it is endogenous. Thus, its starting value in 2004
would be -.000001. If the model starts with this very bad guess of Personal income, it eventually

46

converges to the correct value, but it will converge much faster if it starts with a good guess, and the
previous year’s value is usually a pretty good guess. Note that exogenously projected values will not
be affected, because they will not be -.000001.

The HEART.CPP File for Tiny

A final file created by IdBuild is CALLALL.CPP , a bit of C++ code which calls all of the functions
written by IdBuild in the HEART.CPP file. It is used in conjunction with managing rho adjustments
as will be explained below in conjunction with the MODEL.CPP file. Here is the important part of
CALLALL.CPP for Tiny.

void callall()
{
invtotf();
accountf();

47

#include "dymesys.h"
#include "heart.h"
extern short t;
extern float **coef;
FILE *fmatrix;
float depend;
#include "tseries.inc"
/* end of standard prolog */
void invtotf()
{

/* TINY investment equation */
ub20[t]=cum(ub20,1.,.20);
capstk[t]=cum(invcum, invtot[t-1],.20)/ ub20[t];
delGDP[t]= gdp[t]- gdp[t-1];
/* invtot */ depend = coef[0][0]*capstk[t]+coef[0][1]*delGDP[t-1]+coef[0][2]*delGDP[t-2];
invtot.modify(depend);

}
void accountf()
{

pintdiv[t]= pintdivrat[t]* capinc[t];
pi[t]= labinc[t]+ pintdiv[t]+ pgovtran[t];
ptax[t]= ptaxrat[t]* pi[t];
pdisinc[t]= pi[t]- ptax[t];
psav[t]= psavrat[t]* pdisinc[t];
pcetot[t]= pdisinc[t]- psav[t];
ginc[t]= indtax[t]+ ptax[t];
gsav[t]= ginc[t]- govtot[t]- pgovtran[t];
bsav[t]= capinc[t]- pintdiv[t]- invtot[t];
RoWsav[t]= imtot[t]- extot[t];

}

void tserin()
{

timet.in("timet");
invtot.in("invtot");
....
ginc.in("ginc");

}
void uptseries()
{

//Function to replace missing values or macro vrariable with lagged values.
if(timet[t]< .0000009 && timet[t]> -.0000011) timet[t] = timet[t-1];
if(invtot[t]< .0000009 && invtot[t]> -.0000011) invtot[t] = invtot[t-1];
....
if(ginc[t]< .0000009 && ginc[t]> -.0000011) ginc[t] = ginc[t-1];

}

}

Writing MODEL.CPP for Tiny

So far, there has been a lot of similarity between building Interdyme models and building
macromodels with G7 and Build. Now we venture into new territory with the writing of the
MODEL.CPP file. The box on the following page shows the part of this file that distinguishes Tiny
from any other model built with Interdyme. I have more than once encountered the reaction, “C++
is hard; I don’t have time to learn it, so I’ll just stay with the models I can build in Excel.” It is true
that some of the advanced features of C++ can be rather arcane, but the objects such as Vector,
Matrix and others used in Interdyme are already written, in separate files. The code that you will
need to write is in no more complicated than the simplest level of Basic, Fortran, or C. But with the
Interdyme infrastructure, you can easily write the code for the matrix and vector operations that are
essential for working with input-output models but are tedious to program in those other languages.

The box shows the C++ code that defines Tiny. First of all, you need to know a few things about C+
+ grammar. Anything following a // on the same line is a comment, useful for humans but ignored
by the computer. A comment extending over more than one line is begun with a /* and ended with a
*/. Every C++ statement ends with a semicolon. More than one statement can be put on one line or
a single statement can be broken onto two or more lines between words. C and C++ are case
sensitive: x is not the same as X. For any variable x, x++ means “add 1 to x.” Before a variable
name, like Iteration or oldinvtot, can be used, we must declare what kind of variable it is by
statements like

int Iteration; // declare Iteration to be an integer
float oldinvtot; //declare oldinvtot to be a floating point, real number

A group of statements, indicated by enclosing the statements in curly braces like these { }, can be
used anywhere a single statement could be used, notably in for, do, while, if, else, and else if
constructions. The for loop that fills most of the box of Tiny code is a good illustration of this point.
It looks something like this:

for (t = godate; t<= stopdate; t++) {

 }

where the represents many lines of code. The command means: start t off equal to godate, which
is the beginning year of the run you are making, something like 1995, then do all the statements
represented by the with that new value of t, then increment t by 1 – that’s the t++ near the end of
the line – and do all the statements represented by the with that value of t, and keep doing all this
as long as t is less than or equal to stopdate, a number that other parts of Interdyme will have made
equal to the last year of your run, something like 2010. Now the generic form of the for loop is
written

for (initialization, condition, increment) statement

48

It starts off one or more variables in the initialization, checks that the condition is true and, if it is,
executes the statement, then revises the variable that was initialized as prescribed by the increment,
checks the condition, and executes the statement, and so on as long as the condition is true. When
the condition is no longer true, control passes to the next statement below the for loop. How the
initialization, condition, and increment work in the example is clear enough, but our particular point

49

The Core of TINY’s MODEL.CPP File

for (t = godate; t<= stopdate; t++) {
 if (MaxFlag == 'n') printf("%d ",t);
 // Load all vectors and matrices.
 load(t);
 uptseries();
 // Start of code particular to TINY:
 Iteration = 0;
 // The loop for convergence on pcetot and invtot.
 while(Iteration < 20){
 Iteration++;

oldinvtot = invtot[t]; oldpcetot = pcetot[t];
if(t>= MacEqStartDate)

 invtotf();
inv = invtot[t]*invc; pce = pcetot[t]*pcec;
gov = govtot[t]*govc; im = imtot[t]*imc;
ex = extot[t]*exc;
// Add up final demand vectors
fd = pce + gov + inv + ex + im;
// Solve input-output equations by Seidel method
Seidel(AM, out, fd, triang, toler);
// Compute value-added vectors
// The Interdyme ebemul() function does element-by-element multiplication
dep = ebemul(depc,out); lab = ebemul(labc,out);

 cap = ebemul(capc,out); ind = ebemul(indc,out);
// The Accountant for Tiny
gdp[t] = fd.sum();
if(t>MacEqStartDate){
 deprec[t] = dep.sum(); labinc[t] = lab.sum();
 capinc[t] = cap.sum(); indtax[t] = ind.sum();

 accountf();
 }
// Form the convergence test
invdif = fabs(invtot[t] - oldinvtot);
pcedif = fabs(pcetot[t]- oldpcetot);
printf("Iter %2d pce = %7.1f pcedif = %6.2f invdif = %6.2f\n",Iteration,
 pcetot[t],pcedif,invdif);
if(invdif < .5 && pcedif < .5) break;
}

 // End of code particular to TINY
 // Here when both Investment and PCE have converged
 // Standard end of the spin() function:
 if(MaxFlag == 'y')
 shiftback(t);
 else{
 // Store the values of vectors and matrices for this period.
 store(t);
 printf("\n");
 }
 }

here is that the statement executed is the compound statement composed of all the simple statements
enclosed by the braces that open right after the closing parenthesis of the for statement. I should also
mention that indentation in C and C++ is solely for the benefit of the human reader; it doesn’t matter
to the computer.

The construction

if (condition) statement
else if (condition) statement
else statement

works in an entirely similar way. Any number of else if lines may be used. In writing the
conditions, any of the following operators may be used:

== is equal to
!= not equal
< is less than
> is greater than
>= is greater than or equal
<= is less than or equal
| | or
&& and
! not

Besides the for keyword, the keywords while and do can also be used to write loops. The general
form of the while is

while(condition) statement

which executes the statement as long as the condition is true. There is an example in the Tiny code:

while(Iteration < 20){

For the do keyword, the syntax is

do statement while (condition);

The statement executes until the condition becomes false. Since the condition is tested after each
pass through the loop, the loop will execute at least once. In practice, the do loop is seldom used.

Finally, we need to mention three statements for jumping about in the code. The most commonly
used is break, which breaks out of the innermost loop where it is found. There will be an example
in the Tiny code below. The continue statement shifts control to the end of the innermost loop,
while

goto label;

sends control to the label. The label is a line with one word ending in a colon, like top: or finish: . In
good C++ style, the goto is seldom used; but it is useful when breaking out of a deep nest of loops.
(If you have ever used Fortran, please note that the function of the C++ continue statement is totally
unlike that of the Fortran CONTINUE statement.)

50

That is about all you need to know about C++ in general to use Interdyme. We can now turn to the
C++ code in the box. First of all, there are a few Interdyme-specific functions and variables you
need to know about. In the second line of code, we meet the variable MaxFlag; it is a single letter,
either 'y' or 'n' for “yes” or “no”. It will be 'y' only if the user has specified that we are to do an
optimization. We will assume that it is 'n'. In that case, the printf() function writes to the screen the
year which is about to be computed. (For the full capabilities of printf() or the C++ alternative
keyword out, you can consult the help file of your C++ compiler.)

The program then calls the Interdyme functions load(t) to load into the computer’s random access
memory (RAM) from the computer’s hard disk the starting values for year t of all vectors and
matrices in the VAM file on the hard disk. At the bottom of the for loop, the store(t) function stores
their newly computed values back to the VAM file.

Besides the matrices and vectors handled by the VAM file, most Interdyme models will also have
macro variables such as GDP, total labor force, total employment, unemployment, or an interest rate,
which for any given period, have only one number – not a vector or matrix of numbers – as their
value. Because such variables occur also in macroeconomic models, we refer to them as macro
variables, even though they may be quite “small” or very specific variables, such as “children under
5 years of age”. They are carried in a G bank which generally has the same root name as the
corresponding VAM file. Similarly, we will refer to as macro equations all of the regression
equations handled one-by-one, as in macro models.

The call to the function uptseries() at the beginning of MODEL.CPP checks all the macro variables,
and where it finds a value missing in the current period, period t, it inserts the value of that macro
variable from the previous period. As noted above, this replacement gets the iterative process of
solution off to a good start. On the other hand, exogenous variables that have specified values are
not affected by the call to uptseries(). The uptseries() function was written by IdBuild and is in the
file HEART.CPP.

At this point, we begin the code that is particular to Tiny. Through the general Interdyme structure,
the person running the model provides a value for the variable MacEqStartDate, the date at which
the macro equations of the model begin to be computed. Tiny has only one macro equation, namely
that for invtot(t), total investment. Since we have known accounts up through 2003, we will set
MacEqStartDate equal to 2003. (How we do so, we will see shortly.) Prior to this date, the
Interdyme model for Tiny produces the same results as did the G7-only model. In 2003, only invtot
and gdp may be different. Other macro variables are not affected because the national income
accountant function, accountf(), is not called until the next year. In practice, we will normally set the
rho-adjustment factor for all of the macro variable regression equations in this year (how that is done
will be explained below). Those variables will not differ from historical values in this last year of
historical macroeconomic data.

Once t has passed the MacEqStartDate, the final demands determine output (via the Seidel input-
output calculations), but output determines value-added which in turn determines (via the
institutional accounts) Personal income. This thenv determines total Personal consumption
expenditure, which is one of the final demands. Just as in macro models we solve this circularity by
iteration. That is, we start off with one set of final demand totals – pcetot[t], invtot[t], govtot[t],
extot[t], imtot[t] – and compute along until will have calculated new values. We then compare the
new values with the old, and if the differences exceed the tolerances we set, we go back to compute

51

with the new values of the variables, final demands, outputs, value added, and the variables just
listed. We repeat the process until convergence is reached or the iteration counter exceeds 20,
whereupon we go on to the next year. Since govtot[t], extot[t] and imtot[t] are exogenous, they will
not vary from iteration to iteration, so only the values of pcetot[t] and invtot[t] are checked for
convergence. In fact, the form of the regression equation we estimated has no dependence of
invtot[t] on variables in period t, so we do not for the present model need to check invtot[t], but we
leave the check because in principle there could be such a dependency. The lines of code that drive
the looping process are:
Iteration = 0;
// The loop for convergence on pcetot and invtot.
while(Iteration < 20){
 Iteration++;
 oldinvtot = invtot[t]; oldpcetot = pcetot[t];

 /***
 The substance of the model, which follows here, has been cut out to
 emphasize the testing of convergence. This substance computes new
 values of invtot[t] and pcetot[t].
 ***/

 // Form the convergence test
 invdif = fabs(invtot[t] - oldinvtot);
 pcedif = fabs(pcetot[t]- oldpcetot);
 printf("Iter %2d pce = %7.1f pcedif = %6.2f invdif = %6.2f\n",Iteration,
 pcetot[t],pcedif,invdif);
 if(invdif < .5 && pcedif < .5) break;
 }

The first line initializes an integer, Iteration, to 0. The line
while(Iteration < 20){

sets up the loop that iteratively solves the circularity just explained. The first line within the loop
increments Iteration by one, so we see immediately that this loop will not be executed more than 20
times. We then store away the starting values of invtot[t] and pcetot[t]. Then we execute the
substance of the model, which results in changing these values. When that work is complete, we use
the standard C++ function fabs() to take the absolute value of the difference between the previous
and the new values of these two variables. If both of those values are less than .5, we break out of
the while loop. More complicated models may have more complicated convergence tests, but Tiny's
example is pretty typical.

Once convergence has been reached, the main thing to be done is to call store(t), which stores back
to the computer’s hard disk this period’s values of the vectors and matrices.

With the iterative solution of the circularity understood, we turn to the the substance of the model. It
is easily followed in the code in the box below. The first thing we see is the call to invtotf() when t is
greater than or equal to the starting date for macro equations. The next three lines show
multiplication of a vector (such as invc) by a scalar (such as invtot[t]). Then follows the addition of
five vectors to form the vector fd. Then the function Seidel() is called to compute the output vector
out implied by the final demand vector fd, and the input-output coefficient matrix AM. The the
value-added vectors are computed via element-by-element multiplication of the coefficient vectors

52

with the output vector. Then gdp and the value-added component totals are computed as sums of
vectors. Finally, the accountant is called to make up the national accounts.

This code has several vector and matrix operations. The Interdyme code, nestled away in other
modules (.CPP files) where you do not need to bother reading it, defines what a Vector and Matrix
are and instructs the computer how to read them, add or subtract them, multiply a Matrix by a
Vector, sum up the elements of a Vector, and do both inner-product and element-by-element
multiplication of two Vectors. Let me emphasize: Matrix and Vector are not general C++ features; it
is the other modules of Interdyme working in the background that give you these handy tools for
writing the code for input-output models. In fact, though we have used here only vector addition,
Interdyme has a rather complete library of matrix and vector routines.

The Interdyme function Seidel(AM, out, fd, triang, toler) solves by the Seidel method the equation

out=AM*out + fd

using the order of equations specified by the integer vector triang and with the convergence
tolerance specified by toler. The value of integer vector, or Ivector, is given by the file TRIANG.IV.
For Tiny, its value is

8 7 5 6 4 3 1 2

The Interdyme function ebemul() does an element-by-element multiplication of two Vectors and
gives a Vector as its output. The floating point absolute value function, fabs(), as already mentioned,
is a standard C++ function.

53

Substance of MODEL.CPP for TINY

if(t>=MacEqStartDate)
 invtotf();
inv = invtot[t]*invc; pce=pcetot[t]*pcec;
gov = govtot[t]*govc; im = imtot[t]*imc;
ex = extot[t] * exc;
fd = pce + gov + inv + ex + im
Seidel(AM, out, fd, triang, toler);
dep = ebemul(depc,out); lab = ebemul(labc, out);
cap = ebemul(capc, out); ind = ebemul(indc, out);
// The Accountant for Tiny
gdp[t] = fd.sum();
if(t>MacEqStartDate) {
 deprec[t] = dep.sum(); labinc[t] = lab.sum();
 capinc[t] = cap.sum(); indtax[t] = ind.sum();
 accountf();
 }

Running the Interdyme Model

With the code of MODEL.CPP ready to go, we can create the G bank with all the macrovariables of
the model, write the C++ code for handling the regression equations and identities, compile this code
and MODEL.CPP, link the compiled modules (whose file names end in .obj) into an executable
program (.exe) and get started on forecasting the exogenous variables, all by clicking “Model” in the
G7 main menu and then “Run IdBuild and compile model”.

These clicks bring up the window shown below. If there was a BUILD.CFG file in the directory
where G7 was started, then it will have been used to fill in the boxes in this form.

Run IdBuild Dialog

Otherwise, the user can fill them in, click OK, and the content will be written as the BUILD.CFG
file. The first box, labeled “Name for model bank”, contains the name of the G bank to be created
having all the variables in the model, but no others. The second box, labeled “Name of default
history bank”, contains the name of a G bank from which to draw historical values of the variables,
until a “bank” command switches to a different input bank. The first bank is created by the IdBuild
program; the second must already exist prior to running IdBuild. Generally, the G bank created by
IdBuild should have the same root name as the VAM file with the historical values of the vectors and
matrices.

The next three fields labeled “Default regression limits”, are not actually used. They are there to

54

keep the format of BUILD.CFG the same as that of G.CFG files; any dates will work fine. Then
come the base year of the bank to be created, the first month of that year which is covered (which is
always 1 for annual models), and the maximum number of observations (years) to be accommodated
in the bank. The next two fields allow for advanced features we will not be using and should for our
purposes just contain the letter n for no. When the form has been filled in as desired – and it will
usually automatically be filled in correctly – click OK.

This one click runs IdBuild, which writes HEART.CPP. It also compiles MODEL.CPP, HEART.CPP
and any other modules that need to be compiled, links them together and produces DYME.EXE, the
executable file for running the model.

As described in the earlier section, running IdBuild also writes EXOGALL.REG and RUN.XOG. It
also creates the HIST bank of macro variables in the model. You can use EXOGALL.REG to make
projections of the exogenous variables, exactly as with macro models. It will put the predicted
values of each exogenous variable into its own .XOG file, such as this one, GOVTOT.XOG

update govtot
 2003 348.1439 353.9075 360.3546 367.3013 374.6133
 2008 382.1923 389.9666 397.8835

As with macromodels, you can edit these .XOG files to change the forecasts. In doing so, you can
make use of any function in G7.4 When the file is edited, change the extenstion of the filename from
.XOG to .XG so that your carefully edited file is not overwritten the next time IdBuild is run.

For the present, we are going to content use the
RUN.XOG as automatically written (and shown above)
and also with all the .XOG files. But we need a copy of
RUN.XOG named RUN.XG. We can do that by simply
opening RUN.XOG in the editor and saving it as
RUN.XG. For our first example, we will also copy
RUN.XG to BASE.XG, and this file will be used in the
discussion below.

You can now run the Interdyme model by clicking

Model | Run Dyme Model

The form shown on the right then appears.

The “Title of Run” can be anything that fits in the space
provided. It will show up on tables made with the
Compare program.

4 But the convenient device of putting a 0 for values to be linearly interpolated does not work because in G7 it is
sometimes important to give a true 0 to a variable. Instead, in the “update” command, one leaves out the value to be
linearly interpolated and uses G7's @lint() function. For example, if we wanted to keep the above values of govtot
for 2003 – 2007 but set the 2010 value to 420, and interpolate 2008 and 2009 linearly between 2007 and 2010, we
would put into GOVTOT.XG the following:

update govtot
2003 348.1439 353.9075 360.3546 367.3013
2007 374.6133
 2010 420
f govtot = @lint(govtot)

55

The “Start Date” field should be a four-digit year, for example, 2008. It is the year in which the
calculations begin. The “End date” field is similar; it is the last year for which calculations will be
made.

The “Macro equation start date” is the first year in which the macro equations will be calculated. In
forecasts, it will generally be the last year for which there is data on values of the macro variables.
This data is then used to set the initial value of the rho adjustment. For historical or counter-
historical simulations, the macro equation start date is some time before the last available data.

The “Discrepancy year” is used in some models as the year for calculating a discrepancy vector
subsequently used in the input-output calculations. If your model does not use this device, just fill in
any year.

The next five fields all use the concept of the root name of a file. It is the part of the filename
following the directory name, but before the dot in the name. Thus, the root name of the file whose
full name is C:\MALAYSIA\MODEL\BASE.BNK is just BASE. The part of the file name after the
dot is called the extension. In the example just given, the extension is BNK. The expression run
bank is also useful. A run bank is the combination of three files, the .VAM, the .BNK, and .IND
files associated with a run of the model. All three of these files should have the same root name, and
that root name is the root name of the run bank.

The words RESULT, START, EXOG, MACFIXES and VECFIXES will now be used as names of
variables. The values of these variables are specified by the content of the edit boxes just to the left
of these names on the form. The START variable should be given the root name of the run bank
which the model begins its calculations. The first time the model is run, the START run bank will
have been created by a G7-only version of the model. Once a base simulation has been established
with a run named, say, BASE, this run bank can be used as the START run bank for subsequent runs
of the model.

The RESULT field should be filled in with the root name of the run bank which will be created by
the run of the model. Examples could be “Base” or “Boom” or “Crash”. Normally, the START run
bank is copied to the RESULT run bank before any calculations are done. But if START and
RESULT are the same, no copy can be made – a file cannot be copied onto itself – and the model
begins its calculations from the run bank specified by these two names.

The next variable to be supplied by the user is EXOG, the root name of a file having the
extension .XG. This is a file of G7 commands which change the exogenous variables in the
RESULT run bank. These changes can include both exogenous macro variables such as population
or money supply and exogenous variables in the VAM file, such as input-output matrices.

The next variable is MACFIXES. Just as macro models need to be manipulated by fixes on their
behavioral equations, so too do multisectoral models. The fixes are specified in ways that are similar
to those of macromodels. The details are supplied later in this chapter. For the moment, it is enough
to note that the specifications should be put in a file having the extension .mfx. The root name might
be “Base”, “Boom”, “Crash” or any other descriptive word, but not Macfixes. That root name
should be typed into the MACFIXES field, and a program called Macfixer is called to prepare the
fixes for use by the model. If the word “none” (without the quotation marks) is typed there,
Macfixer is not called, and no macro fixes are used.

Besides the fixes on macrovariables, there may be fixes on vectors. As with macro equation fixes,

56

the details are specified later in this chapter. The specifications should be in a file with the extension
.vfx and the root name of this file should be typed into the VECFIXES field It should NOT be
VecFixes. These fixes are processed by a program called Fixer. If the word “none” is in the
VECFIXES field, Fixer is not called and the simulation program does not look for vector fixes.

If the box “Use all data” is checked, all known values of endogenous macrovariables will be used. It
should not be checked if it is desired to test the model inside the period of known historical values of
endogenous macrovariables.

The type of run will normally be “deterministic”. Optimization similar to that for macro models is
available. Stochastic simulation is not presently (2011) available, but should not be especially
difficult to program for macro equations.

Sometimes, when a model is not behaving correctly, it is useful to put in debugging printout. Often
the problem is not visible until the model has run several years. Only then is the printout desired.
The “Debug start year” field provides a way to supply the year in which such printing starts. If it is
not used in the model, it may be given a value far out into the future, as has been done in the
example.

When this form has been completed, just click the OK button, and the model will be run.

If all goes well, that is all you need to know. But if you would like to know more details about what
happens when you click OK, here are the basics.

The five fields across the top of the form and the two panes at the bottom are used to create a file
called DYME.CFG. The box below shows what it looks like for a base run of Tiny with no vector
fixes.

The five edit controls in the middle of the Interdyme Run Form are used to create an “add”
command with arguments to the G7 command processor. The command is:

add run.add <RESULT> <START> <EXOG> <MACFIXES> <VECFIXES>

where the values of the variables <RESULT>, <START>, etc., are taken from the form. All but the
second of these names can easily be the same. For example, a base forecast might be made, starting
from the historical simulation bank by the following command to G7:

57

Title of run ;Demonstration of the Tiny Model
Start year ;1995
Finish year ;2010
Start MacEq yr ;2003
Discrepancy yr ;1995
Use all data? ;yes
VecFix file ;none
MacroFix file ;Macfixes
Vam file ;base
G bank ;base
Debug start yr ;2100
Max iterations ;100
Optimization specification file; none
Number of random draws; 0
Additive random errors; no
Random coefficients; no

add run.add base hist base base base

In fact, this way of working is to be recommended, for then the result of the run is a set of files
which all have the same root name. In the case of the example, they would be BASE.VAM,
BASE.BNK, BASE.IND, BASE.XG, and BASE.MFX. As noted, either or both of MACFIXES and
VECFIXES can be “none”.

The real question is now “What is the RUN.ADD file, and what does it do?” It is a simple text file
that needs to be in the directory with the model. It and two helper batch files COPYTOTEMP.BAT
and DYMERUNNER.BAT, also need to be in the same directory. They are shown in the boxes
below.

RUN.ADD first uses the COPYTOTEMP.BAT file to copy the <START> run bank to a temporary
run bank whose components are tmp.ind, tmp.bnk and tmp.vam. Then it makes the tmp bank the G
workspace bank and tmp.vam the default vam file. Then it causes G7 to use the commands and data
in EXOG.XG to update all the exogenous variables, vectors and matrices. (Remember, EXOG here
is a variable which will have whatever value you gave it in the Interdyme Run Form.) With all the
exogenous variables now stored in the tmp run bank, that bank is now freed by G7 (the “wsb ws”
and “close b” lines) so that they can be opened by the DYME.EXE program which runs the model.

RUN.ADD then executes the DYMERUNNER.BAT DOS batch file. If there are vector fixes, they
are processed by the Fixer program to form the VECFIXES.FIN file. If there are macrofixes, they
are processed by MacFixer to create the Macfixes G bank used by the Interdyme program. Note: the
name of the file that specifies your macro fixes should have the extension .mfx, but should not be

58

The RUN.ADD File
run.add - The arguments to this file are:
%1 <RESULT>, %2 <START>, %3 <EXOG>, %4 <MACFIXES>, %5 <VECFIXES>
dos CopyToTmp %2

Revise macro bank and vam file with EXOG.XG
wsb tmp
vam tmp b
dvam b
add %3.xg
wsb ws
close b

Tap Enter to run the model
pause

dos DymeRunner %1 %2 %3 %4 %5

The CopyToTemp.bat File
copy %1.ind tmp.ind
copy %1.bnk tmp.bnk
copy %1.vam tmp.vam

MACFIXES.MFX. Likewise, the file that specifies the vector fixes should have the extension .vfx,
but should NOT be VECFIXES.VFX.

With all the exogenous data and fixes read for its use, the Interdyme model is executed by the simple
command “dyme”. When it finishes, the tmp files are all copied to files with corresponding
extensions, but with the value of the RESULT variable as their root name. Similarly, after execution
of Fixer and MacFixer, their input and check files are copied to RESULT.mfx, RESULT.mck (the
check file), RESULT.vfx, and RESULT.vck (the check file from Fixer). If EXOG is the same as
RESULT, then all of the inputs and outputs of the run will have the same root name, a fact which
makes it easy to keep track of what goes into and comes out of each run of the model.

If all these steps seem a bit complicated, remember that it only takes one click on the OK button to
execute them all. Note also that a record of all the input files is made with the value of RESULT as
their root name.

The MACFIXER.CFG file is assumed to be:

The FIXER.CFG (for Fixer) is assumed to be:

59

The DymeRunner.bat File
rem DymeRunner.bat
rem The arguments here have the same meaning as in run.add.
rem If there are no Vector fixes, skip to Macro fixes.
echo %1 %2 %3 %4 %5
if %5 == none goto macrofixes
rem FAILURE
rem Here when there are Vector fixes
copy %5.vfx VecFixes.vfx
zap
fixer
copy VecFixes.chk %1.vck
copy VecFixes.vfx %1.vfx
:macrofixes
if %4 == none goto runmodel
copy %4.mfx MacFixes.mfx
macfixer
copy MacFixes.chk %1.mck
copy MacFixes.mfx %1.mfx
:runmodel
dyme

echo Dyme has finished

copy tmp.* %1.*

Input fix file ;MacFixes.mfx

Output fixes bank ;MacFixes

Model G bank ;tmp

Output check file ;MacFixer.chk

While these files can be changed by the user, doing so will probably cause the Interdyme Run Form
to stop working. The flexibility gained by changing these files is unlikely to be worth the confusion
it will probably cause.

Here are the graphs of total investment and the output of manufacturing for this simplest version
(model 1) of the Tiny Interdyme model.

The results are clearly looking more like model results than they did with all demand exogenous.

Lest you get lost in all the details, let's review what you actually have to do to run Tiny Model 1.
You start G7 in the \Tiny\Model directory and follow the steps in the box on the next page.

60

Input fix file ;VecFixes.vfx
Fix index (.fin) output file ;vecfixes
VAM reference ;tmp
Text check file ;fixer.chk

InvestmentInvestment
224.0

194.4

164.9

1995 2000 2005 2010

 invtot

4 Manufacturing4 Manufacturing
Output and Final Demand

 859

 695

 531

1995 2000 2005 2010

 out4 fd4

We will add a number of features to Tiny to illustrate things you can do with a model of a real
economy. But before we go further, it is time for a few exercises.

Exercises
1. Make alternative forecasts for some of the exogenous variables in Tiny, run the model with

them, graph the results, and show them in tables.

2. Estimate a regression equation for total imports as a function of GDP, put it into the model,
run the model and compare graphically the results with those without your function.

61

In G7:

add tiny.pre (creates HIST.VAM file with historical data and project the
coefficients into future periods.)

add invtot.reg (estimate regression equations)

(Here you could edit MODEL.CPP to make changes for new features)

Click Model | Run IdBuild and compile model

Edit EXOGALL.REG to set tdates 2003 2010 and set limits to 1995 2003
2010

In G7:

add exogall.reg (to generate forecasts of exogenous variables; edit the
forecasts if desired)

Edit RUN.XOG to make desired changes in the exogenous forecasts; add
commands to read exogenous values of matrices and vectors, and save the
result as BASE.XG.

Click Model | Run Dyme Model and fill in the blanks as desired and click
OK.

Back in G7, to graph the results, type

gdates 1995 2003 2010

vam base b

fadd graphs.fad sectors.ttl

To make tables, click Model | Express Tables

More on Interdyme Programming

Before you can build a Tiny-like model for your own imaginary or real economy, we have to deal
with one more basic question: How is the Interdyme program connected with the VAM file? How
does it know, for example, that there are vectors in Tiny's VAM file named fd, pce, gov, inv and so
on? The answer is that the model builder has to indicate to the model the names of these vectors and
matrices. The VAM file is then used to determine their dimension. This identification has to be
done in two steps. First, there is a file called USER.H; the one for Tiny is shown in the box below.

All the variables declared in USER.H are “global”, C jargon for variables which can be accessed
from anywhee in the program. This fact is indicated by the word GLOBAL in front of these
variables. To explain exactly what is going on here requires some explanation, which you can skip if
you are familiar with C and C++, or don't want to bother with the details of exactly how this
GLOBAL keyword works.

Unlike Basic and Fortran, C and C++ are strictly “typed” languages. That is, the nature of every
variable must be declared before it can be used. Typical declarations are:

char sex; // char is a character variable
int zip; // int is an integer
float height, weight; // float is a real number
char name[40]; // this is an array of characters

The variable sex is a single character, presumably 'M' or 'F'; the variable zip is an integer, something
like 20742; height and weight are floating point numbers, that is, numbers that potentially have a
fractional component like 72.5 or 217.8. The variable name is a string of up to 40 characters,
something like “Thomas”. If a variable is declared inside a function, it is local to that function.

62

The USER.H File for Tiny Model 1

// USER.H -- Put here any includes that refer to the user model, per se.
// This version is for Tiny, Model 1

// These names will be read From DYME.CFG and opening screen:
GLOBAL char RunTitle[80],CfgFileName[80],VamFileName[80],GbankName[80],
 VecFixFileName[80],MacFixFileName[80];

GLOBAL char* outfix; // Determines how Seidel will determine output

// Vector declaration:
GLOBAL Vector out, pce, gov, inv, ex, im, fd,
 dep, lab, cap, ind, va, depc, labc, capc,
 indc, pcec, invc, govc, exc, imc, x, y, fix;

// Matrix declaration
GLOBAL Matrix AM;

// Integer Vector that gives the triangulation order of sectors
GLOBAL IVector triang;

Other functions know nothing about it. But a variable declared outside of all functions, typically
near the top of a file containing C code, is global and can be accessed by all functions in that file. A
large program such as Interdyme usually consists of a number of files with names ending in .CPP;
each of these files is called a module, and is compiled separately. If some variable, say name, is to
be accessed in several different modules, then it must be declared globally in all the modules where
it is accessed. But one and only one of the modules should actually make space for it. Which one?
To answer this question, the program should mark all the declarations which are not to make space
as extern, like this:

extern char name[40];

In one and only one module should appear the simple declaration:
char name[40];

That is the module where the space is allocated for the variable. When the compiled modules are
“linked” to form one whole executable program, the references to the variable in all the modules
where it was external are made to point to the space allocated by the one module where it was not
external.

It could potentially be quite a nuisance to remember to mark all but one declaration as extern. That
is where the word “GLOBAL” comes in handy. It is not a standard C keyword but is used in
Interdyme, G7, and many other programs. The declarations of all global variables are put into
“header” files like USER.H, and are marked GLOBAL. These header files are then “included” into
all the modules where they are relevant by a compiler directive like

#include “user.h”

In all but one module, this directive is preceded by another:
#define GLOBAL extern

In these modules, the compiler will replace “GLOBAL” by “extern” before compiling. In that one
and only one other module, namely DYME.CPP in Interdyme, the “#include” is preceded by

#define GLOBAL

which defines GLOBAL to be nothing, so that in this module the “extern” is omitted and space is
made for the global variables.

When a vector or matrix is declared locally, it can be fully “constructed”, that is, space allocated for
its elements. But there is a problem with declaring an object like a vector globally; since the
declaration is outside of any function, no computing can be done. To find out how much space to
allocate for the array of numbers in the vector, the VAM file has to be read, but reading the VAM file
is computing, so what needs to be done? The answer is that once computing has begun, we must
resize all the global matrices and vectors. That is, we must read the VAM file, find out how big the
matrix or vector is, grab enough memory to hold it, and stick the pointer to that memory into the
space saved for the pointer by the global declaration.

That may seem complicated to understand, but it is easy to do. Look at MODEL.CPP for TINY with
the G7 or other text editor. The lines concerned with resizing are the following:

 // Resize Vectors

63

 out.r("out"); pce.r("pce"); gov.r("gov");
 inv.r("inv"); ex.r("ex"); im.r("im"); fd.r("fd");
 dep.r("dep"); lab.r("lab"); cap.r("cap"); ind.r("ind");
 depc.r("depc"); labc.r("labc"); capc.r("capc"); indc.r("indc");
 pcec.r("pcec"); invc.r("invc"); govc.r("govc"); exc.r("exc");
 imc.r("imc"); x.r("x"); y.r("y");

 // Resize Matrices
 AM.r("AM");

The “resize” function or method is abbreviated to just .r . The argument to the resize function is the
name of the vector or matrix in the VAM file. Preparing these lines for USER.H and MODEL.CPP
from the VAM.CFG is a lot of rather mechanical, error-prone work. However, when you gave G7
the command:

vamcreate vam.cfg hist

it also wrote two files, VAM.GLB and VAM.RSZ, as follows

The VAM.GLB file:
GLOBAL Vector out, pce, gov, inv, ex, im, fd,
 dep, lab, cap, ind, depc, labc, capc,
 indc, pcec, invc, govc, exc, imc, x,
 y;
GLOBAL Matrix FM, AM, LINV;
GLOBAL Matrix OUTlag;

The VAM.RSZ file
out.r("out"); pce.r("pce"); gov.r("gov");
inv.r("inv"); ex.r("ex"); im.r("im"); fd.r("fd");
dep.r("dep"); lab.r("lab"); cap.r("cap"); ind.r("ind");
depc.r("depc"); labc.r("labc"); capc.r("capc"); indc.r("indc");
pcec.r("pcec"); invc.r("invc"); govc.r("govc"); exc.r("exc");
imc.r("imc"); x.r("x"); y.r("y");
FM.r("FM"); AM.r("AM"); LINV.r("LINV");
OUTlag.r("out");

They are in the \tiny\model directory. You will notice a striking similarity to the corresponding
portions of the USER.H and MODEL.CPP files. All you have to do is bring these two files written
by G7 into USER.H and MODEL.CPP , respectively, with the G7 or other text editor. For the
model, I removed the FM and LINV matrices, for they will not be used in the Interdyme model.
Likewise, I removed OUTlag matrix, which is used to store the lagged values of the out vector,
because the lagged values are not yet in use.

The rest of the loop() function should be regarded as the standard form, which the user of Interdyme
should have no need to change. The spin() function, which we have looked at in detail, is where the
changes have to be made for different models.

64

Exercise

3. Build a TINY- like model for your imaginary economy or for a real economy for which you
have data readily available.

16.2. Matrix Tools in Interdyme

Here is a quick overview of the actions, operators, and functions available in Interdyme. Some of
them we have seen, but others were not needed in the TINY example. You need not learn the exact
syntax of each of them; just make a mental note of the possibilities.

If A is a Matrix or Vector and k is a scalar (a float in C terms), then

k*A multiplies each element of A by k.
A/k divides each element of A by k.

If A and B are both Matrices or both Vectors of the same dimension, then

A + B gives the matrix or vector sum
A - B gives the matrix or vector difference
ebemul(A,B) gives the element-by-element product
ebediv(A,B) gives the element-by-element quotient, the elements of A being divided by the

corresponding elements of B. If, an element of B is zero, the corresponding
element of A is returned in that position.

If A has the same number of columns as B has rows, then
A*B gives the matrix product.

If A and B have the same number of columns, then

A/B gives the same thing as ~A*B that is, the transpose of A multiplied by B, but
without actually forming the transpose of A. (Think of the / as being a ' to
denote transposing the matrix.)

Interdyme understands parentheses. If all the dimensions are appropriate, the following is an
acceptable statement:

A =k* (B+C+D)*(E + F + G*(H+I));

If x and y are both Vectors with the same number of elements:

dot(x,y) gives the inner product as a float.

If A is a Matrix and x is a Vector with the same number of elements as A has columns,

A%x gives the result of converting x to a diagonal matrix and then post-multiplying
A by this diagonal matrix. Essentially, it multiplies each column of A by the
corresponding element of x.

If A is a Matrix and x is a Vector with the same number of elements as A has rows,

65

x%A gives the result of converting x to a diagonal matrix and then premultiplying A
by this diagonal matrix. Said perhaps more simply, it multiplies each row of
A by the corresponding element of x.

The first of these % operations is useful in computing a flow matrix from a coefficient matrix and a
vector of outputs. The second can compute a flow matrix in current prices from one in constant
prices.

For a Matrix A, Vector v, float z, and int k,

v.set(z) sets all elements of Vector v to z.
A.set(z) sets all elements of Matrix A to z.
pulloutcol(v, A, k) pulls column k of A into v.
putincol(v, A, k) puts v into column k of A.
pulloutrow(v, A, k) pulls row k of A into v.
putinrow(v, A, k) puts v in row k of A.
v = colsum(A) puts the column sums of A into the vector v.
v = rowsum(A) puts the row sums of A into the vector v.
z = v.sum() puts the sum of the elements of v into z.
v.First() gives the number of the first row of v if v is column and vice versa.

If A is a square, non-singular matrix,

!A gives the inverse of A.
A.invert(i,j) transforms A into its inverse by Gauss-Jordan pivoting. The pivot

operations start in row i and stop when the pivot has been in row j. If
these arguments are omitted, the pivoting starts in the first row and
continues through the last, to produce the true inverse.

The difference here is that !A does not change A but creates a new matrix for the inverse while
A.invert() transforms A into its inverse. Thus, if memory space is scarce, the invert action may be
preferable. The algorithm in both cases is Gauss-Jordan pivoting with no niceties. Don't trust it if
your matrix poses any problems for inversion.

If A a is either a Vector or Matrix object, then

~A gives the transpose of A.
A.rows() gives the number of rows as an integer.
A.columns() gives the number of columns as an integer.
A.firstrow() gives the number of the first row as an integer.
A.lastrow() gives the number of the last row as an integer.
A.firstcolumn() gives the number of the first column as an integer.
A.lastcolumn() gives the number of the last column as an integer.

If A is a square Matrix and q and f are Vectors of the appropriate dimension, the equation
q = Aq +f;

can be solved by the Seidel iterative method (if it converges) by the function

66

Seidel(A, q, f, triang, toler);

where triang is an array of integers giving the order in which the rows of A should be selected in the
Seidel process, and toler is a float giving the tolerance which is accepted in the iterative solution.
Similarly, the equation

p = pA + v;

can be solved by
PSeidel(A, p, v, triang, toler);

If you need a temporary Matrix A or Vector B is not in the VAM file, you can declare it locally in the
function where it is needed by:

Matrix A(n,m);
Vector B(n);

were n is the number of rows and m is the number of columns.

In the process of debugging a program, it is sometimes useful to display a Matrix or Vector A on the
screen. To do so, use

A.Display("message", fieldwidth, decimals);

To write a Matrix A to a file use
writemat(A, filename,fieldwidth, decimals);

To write a Vector A to a file use
writevec(A, filename, fieldwidth, decimals);

For completeness, we mention a function which will be explained in following sections. A Matrix A
can be balanced to have the row sums given by Vector a and column sums given by Vector b by the
function
int ras(A, a, b)

If the sum of the elements of a and b are not equal, the user is required to pick which governs.

Finally, we should mention that all of these matrix routines are available in a matrix package called
BUMP (Beginner’s Understandable Matrix Package) which can be used in C++ independently of
Interdyme. The code of BUMP is carefully explained so that beginners of C++ can learn how to
write such functions. Understanding how it works, however, is not necessary for using the functions
in Interdyme any more than it is necessary to know how Excel is programmed in order to use it.

16.3. Vector Elements in Regression Equations

This section will use IdBuild to develop consumption equations for personal consumption, even
though the left-hand side variables are vector elements. This version of the Tiny model is Model 2.

So far, we have used only one behavioral, regression-estimated equation, the one for investment. In
this section, we will add regression equations for all components of Personal consumption

67

expenditures. In the process, we will introduce several new techniques. So far, we have used only
macrovariables in regressions. Now we will see how to use elements of vectors in regression. To
ensure that the total of the predicted values stands in a reasonable relation to disposable income, we
will need to learn about static vectors and apply some vector arithmetic.

In the Tiny\Model directory, you will find the file PCE.DAT shown below.

Open G7, assign the HIST.VAM file as bank b, and make it the
default vam file. Then introduce the data in the PCE.DAT with
an “add pce.dat”statement, and check that it has been correctly
read with the “show” command.

From this data, we now want to estimate simple consumption
equations by regressing each component of the Personal
consumption expenditure vector, pce, on personal disposable
income (pdisinc) and its first difference (dpdis). You will also
find in the \tiny\model directory the PCE.REG file shown, in
abbreviated form, on the right. (The show where there are
similar triplets of commands for regressions for sectors 2, 3, 4,
and 5 in the full file on the disk.) You can now execute this
command file in G7 either by “add pce.reg” or by opening the file in the editor and clicking “Run”.
You will see that G7 has no problem figuring out that pce1, pce2, ..., pce7 are elements of the pce
vector in the default VAM bank.

IdBuild, however, is not so clever. It knows nothing about the VAM bank. In response to the
command “iadd pce.sav”, it will give a number of error messages such as “Cannot find pce1.” The
solution, however, is simple. We just need to tell IdBuild that pce is a vector. We do so with the
command

isvector pce

in the MASTER file. Here is the complete MASTER file for the TINY model with the PCE
equations. The new material is in bold type.

68

PCE.DAT
vamcr vam.cfg test
vam test b
dvam b
vmatdat r 1 9 1 8 5
pce 1995 1996 1997 1998 1999 2000 2001 2002 2003
#" Date" " pce1$" " pce2$" " pce3$" " pce4$" " pce5$" " pce6$" " pce7$" pce8$
1995 14.169 1.908 76.759 283.944 288.323 109.289 443.041 0.0
1996 14.101 1.917 78.365 299.580 295.352 115.091 446.638 0.0
1997 14.127 1.934 76.941 317.095 304.522 121.077 454.966 0.0
1998 14.228 1.972 77.331 343.489 317.501 123.079 466.458 0.0
1999 14.519 2.016 77.277 375.369 334.601 126.768 478.526 0.0
2000 15.000 2.000 80.000 400.000 350.000 130.000 500.000 0.0
2001 14.947 2.001 77.527 407.622 353.149 127.153 506.602 0.0
2002 14.821 1.985 77.343 419.457 356.482 121.248 508.665 0.0
2003 14.974 1.928 75.216 435.677 364.071 115.282 507.851 0.0

The PCE.REG File

lim 1995 2003 2010
catch pce.cat
save pce.sav
f dpdis = pdisinc - pdisinc[1]
ti PCE on Agriculture
r pce1 = pdisinc, dpdis
gr *

. . . .

ti PCE on Services
r pce7= pdisinc, dpdis
gr *
save off
catch off

From it, IdBuild will produce a HEART.CPP file with the section shown in the box below for the
PCE equations. Note first that pce Vector must be passed to the function pcef(); Secondly, note that
the left side of equation stores the value computed by the equation directly into the appropriate
element of the pce vector. There is no provision here for the automatic application of fixes or rho
adjustments. How fixes or adjustments may be applied we will see in a later section. Finally, back
in the Master file above, note the “isvector clear” command in the third line. If it were not there,
IdBuild would write the following invtotf() and accountf() functions so that they also had to be
passed – quite unnecessarily – the pce vector.

Equations for Personal consumption expenditures (PCE) need a property not required of the
equations for most other variables, namely, they must add up properly. More precisely, the sum of
the predicted values from the PCE equations plus Personal savings must equal Personal disposable
income. We could, of course, just let savings be a residual, but it is too important for the
macroeconomic properties of the model to be treated so casually. So we generally want to have an
equation for Personal savings – and for any other items in the difference between total PCE and
disposable income, of which there are none in Tiny. The best way to achieve this equality is to add
up the predicted pieces, compare the sum with the desired total, and spread the difference over the
components in some pre-determined shares. The shares we have used are proportional to the
income coefficients of the various regression equations. The shares were chosen in this way because
the discrepancy between the sum of the predicted values and the desired total can be thought of as a

69

Personal Consumption Equations in the HEART.CPP File

void pcef(Vector& pce)
{
dpdis[t]= pdisinc[t]- pdisinc[t-1];
/* PCE on Agriculture */
pce[1] = coef[0][0]+coef[0][1]*pdisinc[t]+coef[0][2]*dpdis[t];
/* PCE on Mining */
pce[2] = coef[1][0]+coef[1][1]*pdisinc[t]+coef[1][2]*dpdis[t];
/* PCE on Gas and Electricity */
pce[3] = coef[2][0]+coef[2][1]*pdisinc[t]+coef[2][2]*dpdis[t];
/* PCE on Manufacturing */
pce[4] = +coef[3][0]+coef[3][1]*pdisinc[t]+coef[3][2]*dpdis[t];
/* PCE on Commerce */
pce[5] = +coef[4][0]+coef[4][1]*pdisinc[t]+coef[4][2]*dpdis[t];
/* PCE on Transport */
pce[6] = coef[5][0]+coef[5][1]*pdisinc[t]+coef[5][2]*dpdis[t];
/* PCE on Services */
pce[7] = coef[6][0]+coef[6][1]*pdisinc[t]+coef[6][2]*dpdis[t];
}

Master File for TINY with PCE Equations
isvector pce
iadd pce.sav
isvector clear
iadd invtot.sav
iadd account.sav
iadd pseudo.sav
end

little more or little less income to be divided among the various goods purchased. Sometimes we
have used the standard error of estimate of the different equations, on the grounds that the changes
should be greatest where the uncertainty about the right value is greatest.

The mechanics of how the discrepancy is allocated is, however,
independent of how the shares were determined. We create a text
file, which we shall call PCESPREAD.DAT, which has the shares we
want to use, however we got them. They should, of course, sum to
1.0. The box to the right shows this file for Tiny. In the file
USER.H, we need to add at the end the line

GLOBAL Vector PCESpread;

to declare globally the Vector which will hold the shares for
spreading.

To make use of the new equations, we need to make a few changes in
MODEL.CPP. On the disk, the modified file is called MODEL2.CPP; copy it to MODEL.CPP to
make the changes take effect. The code snippets below show excerpts from the new MODEL2.CPP.

The first order of new business in the loop() function is to resize the PCESpread vector which has
been declared globally and then to read in its data. That job is accomplished by the lines

// Resize and read the vector for spreading the PCE discrepancy.
PCESpread.resize(NSEC);
PCESpread.ReadA("PCESpread.dat");

Note that the resizing is done by the resize() function of the Vector, not by the r() function. The r()
function looks in the VAM file to find the dimension of the Vector, so it won’t work for the
PCESpread Vector, because it is not in the VAM file. The resize() function is given the size directly
as its argument. In Tiny, NSEC has already been given the value of 8.

The predicted values of the elements of the pce vector are computed from the regression equations
by the function call

pcef(pce);

The lines
// Sum up the calculated PCE elements
pcesum = pce.sum();
pcediscrep = pcetot[t] - pcesum;
// printf("\npcediscrep = %10.2f\n",pcediscrep);
// Spread discrepancy by the proportions of PCESpread vector.
pce = pce + pcediscrep*PCESpread;

sum up the calculated PCE elements, subtract the sum from the desired total, and spread the
discrepancy among the sectors in the proportions given by the PCESpread vector. The line

// printf("\npcediscrep = %10.2f\n",pcediscrep);

is now just a comment without effect on the operation of the program. If the // at the beginning were
removed, it would print the discrepancy at each pass through the loop. It can be used it to check that
the discrepancies are indeed small. Instead, however, of totally removing it, it is left as a comment

70

The PCESPREAD.DAT file

0.003175
0.000236
0.000000
0.481880
0.248311
0.036523
0.229874
0.000000

which may be a useful illustration of how to include such debugging printing.

You should now estimate the PCE equations, make the required changes in USER.H and
MODEL.CPP, do Model | Run IdBuild and compile model, then do Model | Run dyme and graph the
resulting elements of the pce vector.

To review, the two new techniques introduced in this section were the “isvector” command to
IdBuild and the use of a static vector not in the VAM file.

The “isvector” command, by the way, also allows vector elements to be used on the right-hand side
of regression equations. For example, in a more detailed model than Tiny, the output of the Railroad
industry may be used in the equation for Railroad construction.

16.4. Systems of Detached-Coefficient Equations

In this section, we'll develop the version of Tiny we call
Model 3, and you can copy MODEL3.CPP to
MODEL.CPP. This section introduces the use of
“detached-coefficient” equations.

The use of the “isvector” command in IdBuild is
perfectly satisfactory for elements of vectors on the
right-hand side of the regression equation; but for
variables on the left-hand side, it has its limits. In the
first place, automatic rho-adjustment is not possible.
Secondly, it cannot be used to pass the whole system of
import equations to the Seidel routine so that imports
dependent on domestic demand can be calculated
simultaneously with product outputs. Nor can it be used
to pass a whole system of consumption functions, such
as the PADS system (covered in chapter 20) to a function
to compute predicted values as a fairly complicated
function of the parameters. All of the problems are
overcome in through the use of a system of “detached-
coefficient” equations. Actually, this method is older
than the “isvector” method and goes back to models
developed in the early 1960's. The “detached-
coefficient” name comes from the fact that the regression
equations are “detached” from the variables names and stored in a separate file by G7. The added
complexity of this method, however, is that program has to be written to interpret the equations. For
Seidel with import equations and for PADS, however, the code is already written and part of the
Interdyme system.

In this section, we will see how to use the detached-coefficient method for the PCE equations we
have already estimated. We begin from the PCEEQN.REG file shown in the box to the right. It is a
command file for G7; as usual, the four dots indicate the omission for printing here of a repetitive
portion of the text of the file. There are two new commands, “punch” and “ipch”. The “punch”
command

71

The PCEEQN.REG File

catch pce.cat
lim 1995 2003
vam hist b
dvam b
f dpdis = pdisinc - pdisinc[1]

punch pce.eqn 7 4 2003

ti PCE on Agriculture
r pce1 = pdisinc, dpdis
ipch pce 1 L
gr *

. . . .

ti PCE on Services
r pce7= pdisinc, dpdis
ipch pce 7 L
gr *

punch off

catch off

punch pce.eqn 7 4 2003

opens a file to be called PCE.EQN to receive the regression coefficients. There will be 7 equations
with up to 4 coefficients each. The last year of data used in estimating them will be 2003. After
each equation is estimated there is an “ipch” command such as

ipch pce 1 L

which writes to the open “punch” file the rho and the regression coefficients for the most recently
estimated regression equation. In the file, it will be labeled as the equation for the pce vector,
element 1. The “L” will be written to file to indicate the type of equation. It could be any one letter
or number; we will write the program to interpret these letters correctly. The L in this particular case
stands for “Linear”. The file ends with the command

punch off

to close the file to which G7 has been writing the regression results. The name of the command,
“punch”, refers to punching the results into cards and indicates just how ancient this method is. The
cards are gone, but the name works fine. The PCE.EQN file produced by G7 from the
PCEEQN.REG file shown above is shown in the box below.

The three numbers on the first line are taken from the “punch” command that opened the file and
have already been explained. For each equation there are then three lines. The first gives, somewhat
redundantly, the name of the vector of the dependent variable, the number of the element in the
vector, the type of equation, and the number of regression coefficients for it. The second line
specifies which coefficients will be given in the next line, and the third line gives first the rho
estimated for the equation and then the regression coefficients in the order specified by the second

72

The PCE.EQN File
7 4 2003
pce 1 L 3
1 2 3
 0.280107 10.1751 0.00312443 -0.00190926
pce 2 L 3
1 2 3
 0.456294 1.62189 0.000232365 0.000253049
pce 3 L 3
1 2 3
 0.150868 76.9213 -6.45766e-06 0.0127951
pce 4 L 3
1 2 3
 0.214085 -303.312 0.474066 -0.155993
pce 5 L 3
1 2 3
 0.268659 -14.8633 0.244285 -0.0810024
pce 6 L 3
1 2 3
 0.572774 66.8459 0.0359306 0.0773437
pce 7 L 3
1 2 3
 -0.0435048 164.664 0.226147 -0.179012

line.

In our case, the second line may seem unnecessary since it is both very simple and always the same.
It can, however, add considerable flexibility. We might have had, for example, a more general form
of regression in which there were five possible independent variables with a relative price term as
the fourth and a time trend as the fifth variable. In that case, had the equation for element 7 used
only the intercept and the time trend, the command to G7 would have been

r pce7 = time
ipch pce 7 L 1 5

and in PCE.EQN the resulting lines would have been something like
pce 7 L 2
1 5
 -0.0435048 164.664 12.345

where 12.345 is the coefficient on time. Since the coefficient matrix is originally set to zero, this
device allows one type of equation to be used for all variants of an equation that differ from a base
type only by omitting one or more of the variables. Note that the numbers at the end of the “ipch”
command are optional. If they are not specified, then G7 assumes that they are the integers up to the
number of variables in the equation.

Now with the equations estimated and stored away in the PCE.EQN file, we have to get them into
the Interdyme program and tell Interdyme how to interpret the coefficients. To do so, we will use the
C++ concept of a “class”, namely, of a class called “Equation.”. Generally, a class is a combination
of data and ways of working with the data. We have already met the Matrix and Vector classes.
Instances of a class are called “objects.” For example, in USER.H we need to put the line

GLOBAL Equation pceeqn;

It will make the object pceeqn an instance of the class Equation. Then in MODEL.CPP, we put the
lines

// Resize, read, and store the PCE equations; reads the pce.eqn file.
pceeqn.r("pce.eqn");

The second of these calls the r() function (sometimes called method) of the pceeqn object to read the
file PCE.EQN, claim enough space for storing the data of the PCE equations, and read the data from
the file into that space. How does the program know how to claim the space and read the data? Any
object of the Equation class knows how to read the data, how to dish out the coefficients of the
equations and some other data to using programs, and how to apply rho adjustments to the predicted
values. It does NOT know how to use the coefficients to compute the predicted values. The user,
you, must write those instructions. We will see how in a moment. First, here is an except from
MODEL.CPP which shows the new code for reading the equation data in context in the loop()
function.

// Resize and read the vecor for spreading the PCE discrepancy.
PCESpread.resize(NSEC);
PCESpread.ReadA("PCESpread.dat");

// Resize, read, and store the PCE equations; reads the pce.eqn file.
pceeqn.r("pce.eqn");

73

// pceeqn.rhostart is read as the last year used in estimating the PCE equations.
// We want it to be the year in which to start the rhoadjustment. If we are
// doing a historical simulation, that should MacEqStartDate if it is before the
// date recorded in the pce.eqn file.
if(pceeqn.rhostart > MacEqStartDate) pceeqn.rhostart = MacEqStartDate;

In the spin() function, the new equations are called to calculate the pce vector by the line
pcefunc();

shown in context in the lines below.
// Compute the estimated PCE equations with equation system
if(t>= MacEqStartDate){
 pcefunc();
 // Sum up the calculated PCE elements
 pcesum = pce.sum();
 pcediscrep = pcetot[t] - pcesum;
 // printf("\npcediscrep = %10.2f\n",pcediscrep);
 // Spread the discrepancy by the proportions of the PCESpread vector.
 pce = pce + pcediscrep*PCESpread;
 invtotf();
 }
inv = invtot[t]*invc;

. . . .
As already noted, the function pcefunc() that calculates the predicted values must be written by the
user. Consequently, it is in MODEL.CPP, and we had better have a good look at it. It is shown in
full in the box below.

The first thing to be explained is the difference between the equation number, for which the program
uses the variable i and the sector number, for which it uses the variable j . In the case of Tiny, the
PCE vector has 8 elements, one for each sector, but there are only 7 equations, because one sector
(sector 8) is always zero. In larger models or for other dependent variables, the difference between
the number of sectors and the number of equations can be much greater. The equations are read and
stored in the order estimated, which is not necessarily the order of the sector numbers. For each
equation, however, the corresponding sector number is stored in the sec variable Thus,

j = pceeqn.sec(i);

will put into j the sector number corresponding to equation i . The single character indicating the
type of equation is stored in the type variable. Thus

which = pceeqn.type(i);

will put into the char variable which the type of equation i . In our case so far, it will be the letter L .
Finally, the regression coefficients of equation i are given by pceeqn[i][1], pceeqn[i][2], pceeqn[i]
[3], and so on. In our case, these are the constant term, the coefficient of pdisinc and dpdis,
respectively. (With this explanation, the code down to as far as the comment

// Apply rho-adjustment

74

should be reasonably clear.) The use of the rho-adjustment requires more explanation.

In macro models, the calculation of the initial error from which the additive rho-adjustment factor
begins is simple enough. It is calculated in the first period of the run. Matters are more complicated
in the multisectoral model case because not all data is equally up-to-date. We may, for example,
have macroeconomic variables through 2005 but detailed PCE data only through 2003. The starting
error for rho adjustments must therefore be calculated for PCE components in 2003 and used in
2004, 2005, and later years. For a macro variable, however, actual data can be used for 2004 and
2005, and the starting rho-adjustment error calculated in 2005 and used thereafter. That is why the
variable rhostart is part of the Equation object. As read from the data file, it gives the last year of
estimation, which is presumably the last year of data and therefore the last year in which the base
error of the rho-adjustment process can be calculated. A further complication is that, since predicted
values of one variable may depend upon calculated values of other variables, the rho-adjustment
errors cannot be set until the model has converged for the period. Finally, sometimes we want to do
an historical simulation and set all the rho-adjustment errors in the first period of the run. In that
case, we uncheck the “Use all data” box on the screen which appears when we click Model | Run
Dyme Model (see p. 53).

Bearing all that in mind, what happens when the program executes the statement
pce[j] = pceeqn.rhoadj(cons,pce[j],i);

near the end of the program shown in the box? The rhoadj() function of the pceeqn object is passed

75

Function to Calculate PCE from Detached-Coefficient Equations

// pcefunc() -- PCE functions for TINY
int pcefunc(){

int n,i,j,t1;
float cons;
char which;

n = pceeqn.neq; // Number of equations
// pdisinc is personal disposable income. It is a global macro variable.
// Compute variables used in several equations.
dpdis[t] = pdisinc[t] - pdisinc[t-1];

// Loop over the equations
for(i = 1; i <= n; i++){

j = pceeqn.sec(i); // j is the sector number of this equation.
which = pceeqn.type(i); // which is the equation type
if(which == 'L'){

cons = pceeqn[i][1] + pceeqn[i][2]*pdisinc[t] + pceeqn[i][3]*dpdis[t];
}

else {
printf("Unknown equation type %c in pcefunc, category %d.\n",

which,i);
tap(); //Pause so that error message can be read.
continue;
}

// Apply rho adjustment
// Note the use of i and j in the following statement.

pce[j] = pceeqn.rhoadj(cons,pce[j],i);
}

pce.fix(t);
return(n);
}

the calculated value (cons), the value already in the vector (pce[j]), and the equation number, (i).
Simply put, the function then figures out what it is supposed to do and does it. More specifically, if
we are using all data and data is still available, it returns the actual value. If we are past the end of
the data, it adds on the rho-adjusted error to the value predicted by the equation and returns that. If
the signal that the model has converged (setrho) has been set and we are in the period in which the
base error should be computed, it does so, saves it, and returns the actual value. If the model has
converged, but we are already past the year for calculating the error, it adds on the error for this year
to the computed value and updates the error for the next year by multiplying this year’s error by the
appropriate rho factor.

That leaves a question. How does the rhoadj function know that the model has converged? Why
does it need to know that? Because only then can it calculate the starting error for the rho-
adjustment in the appropriate year, or in later years, multiply this year’s errors by the appropriate rho
to get them ready to be added to the values predicted by the equations in the next year. The signal
that the model has converged is the variable setrho. This setrho can have one of two values, ‘y’ for
yes or ‘n’ for no. Near the top of the MODEL.CPP file, we see the lines

float pcesum, pcediscrep;
setrho = 'n';
int Iteration;

so we know it starts off as ‘n’. What happens next is shown in code snippet from MODEL.CPP in
the box below. The while loop begun in the first line continues until convergence is reached (or the
limit on iterations is hit). On reaching convergence, the program breaks out of the while loop, sets
setrho to ‘y’, calls the two functions involving rho adjustment – namely pcefunc() and invtot() – and
then puts setrho back to ‘n’.

As with macromodels, there other kinds of fixes besides rho adjustment. How to specify them will
be explained in section 16.8. Here we just note that the statement

pce.fix(t);

at the end of the pcefunc() function will apply the fixes to be explained in that section.

The fact that the rho-adjustment is working is seen very clearly in the graph on the next page. For it,
we made the VAM file BASE.VAM the default VAM file, copied the variable pdisinc from the
BASE bank into the G workspace, and then estimated the regression in test mode, the default mode.
Thus, the “actual” line in the graph is history up to 2003 and model forecast thereafter, while the
“predicted” line is the prediction from the equation without rho-adjustment but made with the
model-predicted values of disposable income. The way the model forecast remembers the big error
of the equation in 2003 indicates clearly that the rho adjustment is working.

76

16.5. Import Equations

So far we have considered imports as exogenous. In fact, they are very dependent on domestic
demand, so it makes sense to relate them to domestic demand and then calculate them from the
estimated equations simultaneously with the calculation of output. In this section, we will see how
to do exactly that. The new code is all in MODEL4.CPP, which you should copy to MODEL.CPP.

The IMPR.DAT file, shown to the right,
will, when introduced in G7 with the
“add” command, provide values for the
im vector from 1995 to 2003. Up until
now, imports have been treated as
negative numbers because it is
convenient to do so in the input-output
table. In this file however, imports are
positive numbers, as they usually are in
statistical sources. We will use them
henceforth as positive numbers and
make the required changes in our
program.

It is natural to suppose that imports of product i , mi , are a linear function of domestic demand for
the product, di , thus

mi = αi + βi di .

Conceptually, domestic demand for a product is the row total for that product in the input-output
table without subtracting imports. Thus, conceptually, it does not depend on imports. Statistically,
however, it is most easily calculated as domestic output, qi , plus imports (as a positive number),
thus:

d i= qi + mi.

Substitution of di from the second of these equations into the first and solving for mi gives imports as
a linear function of domestic output:

m i = ai + bi qi

To estimate these regressions, we need data on domestic output, out; it is found in the OUT.DAT file.

77

 PCE on Transport PCE on Transport

134.0

121.6

109.3

1995 2000 2005 2010

 Predicted Actual

The IMPR.dat File
vmatdat r 1 9 1 8 5
im 1995 1996 1997 1998 1999 2000 2001 2002 2003
#Date 1 2 3 4 5 6
7 8
1995 19.753 8.118 0 108.065 0 0 14.470 0
1996 19.320 8.236 0 113.841 0 0 14.795 0
1997 18.808 8.612 0 124.300 0 0 15.561 0
1998 18.114 8.619 0 130.503 0 0 16.307 0
1999 18.732 9.068 0 145.711 0 0 17.461 0
2000 20.000 10.00 0 170.000 0 0 20.000 0
2001 19.068 9.302 0 155.832 0 0 18.902 0
2002 18.992 9.122 0 156.815 0 0 18.665 0
2003 20.105 9.763 0 166.286 0 0 19.018 0

(In real economies, it is quite normal to have data on output in years for which the complete input-
output table is not available. You may, however, wonder how we made it up for Tiny. In Section
16.7, we will introduce a series of input-output coefficient tables for 1995 – 2003. From the data
already given for PCE and imports, and by moving the 2000 final demand vectors for investment,
government, and export by the corresponding historical totals, final demand vectors for these years
were calculated; with the time-varying input-output table, the implied domestic outputs shown in the
OUT.DAT file were calculated.)

The G7 command file to do the regressions is shown on the left below, and the resulting
IMPORT.EQN file is shown on the right. The program to compute the imports from these equations
is given in the box on the following page and may be found in MODEL4.CPP.

We now need a version of Seidel that will compute imports simultaneously with outputs. It is
shown in the box below and may be found at the end of the MODEL4.CPP file. The prototype for it
is found near the top of the MODEL4.CPP file:

// Prototype for Seidel used in TINY
short Seidel(Matrix& A, Vector& q, Vector& f, IVector& triang,float toler);

so that when a reference is made to it later, the C++ compiler will know how to set up the call to it
and how to handle the return. In this same file, in the spin() function, right after the PCE and
investment functions have be calculated, we find the lines:

inv = invtot[t]*invc;

78

IMPORTS.REG – Estimate Imports

Estimate the import equations
bank tiny
vam hist b
dvam b
add impR.dat
add out.dat
vc out = LINV*fd

Regress imports on outputs
lim 1995 2003 2003
punch import.eqn 4 2 2003
ti Agricultural Imports
r im1 = out1
gr *
ipch im 1 L
ti Mining Imports
r im2 = out2
gr *
ipch im 2 L
ti Manufacturing Imports
r im4 = out4
gr *
ipch im 4 L
ti Service Imports
r im7 = out7
gr *
ipch im 7 L
punch off

IMPORT.EQN – Equation File for Imports for Tiny

 4 2 2003
im 1 L 2
 1 2
 0.253335 18.6513 0.00365866
im 2 L 2
 1 2
 -0.104578 0.740326 0.170614
im 4 L 2
 1 2
 -0.0630504 -67.3531 0.282823
im 7 L 2
 1 2
 0.235647 -14.1671 0.049055

gov = govtot[t]*govc;
ex = extot[t]*exc;
fd = pce + gov + inv + ex;
Seidel(AM, out, fd, dump, triang, toler);
imtot[t] = im.sum();

The first three compute final demand vectors as we have done up to now. Then the fd vector is
calculated as the sum of these components. Note that imports have not been subtracted.

In the Seidel() function, a potentially infinite loop is started by the code of which the outline is:
iter = 0;
while(1){

. . . .
iter++;
if(dismax < toler || fdismax < .000001) break;
if(iter > 25)return(ERR);
}

return(OK);

The key to getting out of this loop successfully is clearly to get the dismax variable down to less than
toler, where toler is the error tolerance for the Seidel process which was given in the call to Seidel()
and dismax is the maximum discrepancy between the output of a sector calculated on the current

79

The Import Function from the MODEL.CPP File
// Importfunc() -- Import functions for TINY
int importfunc(Vector& q){

int n, i,j,t1;
float imp;
char which;

if(t < MacEqStartDate) return(0);
n = impeqn.neq; // Number of equations
// pdisinc is personal disposable income. It is a global macro variable.

// Loop over the equations
for(i = 1; i <= n; i++){

j = impeqn.sec(i); // j is the sector number of this equation.
which = impeqn.type(i);
if(which == 'L'){

imp = impeqn[i][1] + impeqn[i][2]*q[j];
}

else {
printf("Unknown equation type %c in importfunc, sector %d.\n",

which,i);
tap(); //Pause so that error message can be read.
continue;
}

// Apply rhoadjustment
// Note the use of i and j in the following statement.
im[j] = impeqn.rhoadj(imp,im[j],i);
}

im.fix(t);
return(n);
}

iteration of the Seidel process and the output of the same sector calculated in the previous iteration.
The exit from the while loop when the iteration count passes 25 is just a safety net to avoid a hung
computer if the process fails to converge.

The first thing done under the while loop is to compute imports im, with a call to the import
function. These imports are then subtracted from the given fd vector to get the net final demand
vector, f, with which the rest of this iteration of the Seidel process takes as its final demand. Note
that the calculation of the import vector may involve not only the import equations but also rho-
adjustments and perhaps other fixes. Convergence on the q or output vector will imply convergence
on the import vector as well.

The most of the rest of the code of the Seidel() function just implements the process as explained
above and should be fairly transparent. There is, however, one non-standard wrinkle which needs
explanation. It gives the process the capability of accepting a pre-determined output for one or more
products. Petroleum extraction in the United States is a good example; demand beyond some
capacity level must be imported or dealt with in some way as a shortage. If i is a normal, non-
constrained product, then in column 18 of the SECTORS.TTL file its row should have the letter 'e'.
The 'e' means that the product uses the equation to determine output. Here are a few lines from
Tiny’s SECTORS.TTL:

Agricul ;1 e "Agriculture"
Mining ;2 e "Mining and quarrying"
Elect ;3 e "Electricity and gas"

Whatever letter is in that column will become the value of outfix(i). When our routine finds a value
of ‘e’ in outfix(i), it will set the output of product i equal to the demand which has been calculated.
If, however, i is a constrained product, the routine keeps the initial, presumably exogenously set,
value of q[i] and puts the difference between it and calculated demand into the vector called dump.
What should be done with dump is then up to the model builder who is using this feature. Since Tiny
is not using it, we will do nothing with dump.

At this point you may want to refresh your memory of the Seidel process, but after doing so, all the
coding in the Seidel() function shown in the box on the next page should make sense. When it does,
build and run the new model and make graphs of imports and outputs. (You will need to copy
MODEL4.CPP to MODEL.CPP .)

The above graph shows the similarity that we now find in the forecasted course of outputs and

80

 Manufacturing Manufacturing
 Output and Imports

 600

 700

 800

 900

 1000

 1100 225

100

125

150

175

200

1995 2000 2005 2010

 out4 im4

imports for Manufacturing. The scale for the two curves, however, is different; the scale for output
is shown on the left and that of imports on the right. The imports – the blue, upper line marked with
squares – are actually much less than output, but the pattern of movement is similar. (The right
vertical axis for graphs drawn with the G7 “mgr” command may be set by the “hrange” command.)

81

82

/* Seidel() Version 2, with imports .**

short Seidel(Matrix& A, Vector& q, Vector& fd, Vector& dump, IVector& triang,
float toler){
short i,j,k,first,last,n,iter,im1,imax;
float discrep,dismax,fdismax;
double sum;
Vector f(fd.rows()); //scratch vector

iter = 0; // Iteration count
n = A.rows();
first = A.firstcolumn();
last = A.lastcolumn();

if(q.rows() < A.rows()){
printf("In Seidel, the solution vector is not large enough.\n");
return(ERR);
}

dump.set(0.);

while(1){
// Compute imports
importfunc(q);
f = fd - im;
dismax = 0;
for(k = triang.First(); k < triang.First()+ triang.numelm(); k++){

i = triang[k];
sum = f[i];
for(j = first; j <= last; j++)

sum += A[i][j]*q[j];
sum -= A[i][i]*q[i]; // Take off the diagonal element of sum
sum = sum/(1.- A[i][i]);
if(outfix[i] != 'e'){ // Override the equation

// Dump error into dump
dump[i] = q[i] - sum;
sum = q[i];
}

else dump[i] = 0;
discrep = fabs(sum - q[i]);
if(discrep > dismax){

dismax = discrep;
imax = i;
if(fabs(sum)>1.0e-3) {

fdismax = fabs(sum);
fdismax = dismax/fdismax;
}

}
q[i] = sum;
arith("in Seidel",i);
}

iter++;
if(dismax < toler || fdismax < .000001) break;
if(iter > 25){

printf("No convergence in %d iterations. Discrep = %7.2f in sector %d.\n",
iter, dismax, imax);
return(ERR);
}

}
printf("Seidel iterations: %d ",iter);
return(OK);
}

16.6. Speeding Up Solutions with Read and Write Flags

So far, we have been reading and writing the value of every vector and every matrix from the VAM
file in every period. That is neither desirable nor necessary. Take the AM matrix for example. We
know perfectly well that at present we do nothing to change it in the program, so writing it back to
the VAM file at the end of each year’s calculation is a waste of time. In the case of the out vector,
we certainly want to write the value after it has been computed, but in the forecast period the value
of out in the VAM file on the first run of the model will be all zero. That is not a good starting value
for the Seidel process. It would be much better just to start with the previous period’s value. Thus,
we would want to read it only in the initial year.

Such considerations have lead to the introduction of read and write flags for the vectors and matrices
which are set when they are resized in MODEL.CPP. For example, so far we have had as the first
line of the resizing commands

out.r("out");pce.r("pce");gov.r("gov");

which is equivalent to
out.r("out",’y’,’y’);pce.r("pce",’y’,’y’);gov.r("gov",’y’,’y’);

The second argument – the first ‘y’ – in one of these function calls is the read flag; the third, the
write flag. Possible values for the read flag are:

‘y’ yes, always read the vector or matrix
‘n’ no, never read the vector or matrix
‘i’ read the vector or matrix in the initial year of the run
‘a’ read the vector or matrix if there is data available for it.

Possible values of the write flag are:

‘y’ yes, always write the vector or matrix
‘n’ no, never write the vector or matrix

The default value of both flags is ‘y’; that is to say, if no flags are specified, both are assumed to be
‘y’. If only one is specified, it is interpreted as the read flag. To specify a write flag, we must also
specify the read flag, even if it is ‘y’. For example, to set the read flag for the AM matrix to ‘y’ and
the write flag to ‘n’, we would use the call

AM.r(“am”, ’y’,’n’);

To set the read flag for the out vector to ‘i’ but the write flag to ‘y’ , it is enough to use the call
out.r(“out”, ‘i’);

The read flag ‘a’ can be quite convenient to read the values of a vector in years when it is known but
not in later years. Its use, however, requires telling the program the last year of data for the vector or
matrix in question. To do so, the first step is to remove the comment indicator (//) in front of the
line
// lastdata(); // Use of lastdata function requires that the LastData file exist.

83

which is found just above the resize() commands for vectors. The call to the function lastdata() will
read a file which must be called LASTDATA. Here is a possible LASTDATA file for Tiny:

pce 2003
im 2003
out 2000

It simply lists one or more of the vectors in the VAM file and the last year for which data is available
for each.

Because Tiny is so tiny, you will not notice any acceleration of the solution by the use of these flags.
For big models, however, they can make a small but measurable difference in solution time. You
should experiment with them in Tiny, but since there is not much in the way of results to show, I will
not give a more explicit application.

84

16.7. Changing Input-Output Coefficients and Prices

Up until now, our input-output coefficient matrix has remained constant, as have the coefficients for
the value-added components: depreciation, labor income, capital income, and indirect taxes.
Consequently, there has been no need to consider changes in relative prices. We must not leave Tiny
without introducing coefficient change and relative prices, for input-output analysis has often been
unjustly reproached for assuming constant coefficients. In fact, it is precisely input-output analysis
which enables the specification of changing input-output coefficients. In this section, we will
present Model 5, which incorporates prices and coefficient change.

I prevailed upon the Tiny statistical
bureau to construct a coefficient matrix
for 1995 and drew upon the collective
wisdom of a group industry specialists
to project the table to 2010. The results
of these labors, together with the matrix
for 2000 with which we have been
working, are contained in the files
AM1995.DAT, AM2000.DAT, and
AM2010.DAT. For intervening years,
we will have to rely upon linear
interpolation. The same groups
provided us with past history and
projections of the labor income
coefficients for the same two years.
They are in the file LABC.DAT.

We need to significantly expand the
VAM file so we will start from a new
VAM configuration file, VAMP.CFG,
which you will find on the disk. (The P
in the filename stands for Prices.) We
have added the vector of prices, prices,
final demands in nominal prices, fdN,
pceN, govN, invN, exN, and imN, the
interindustry flow matrix in nominal
terms, FMN, and two vectors, fix and
cta, whose functions will be explained
in the next section on fixes.

Corresponding to this new
configuration is a new G7 command
file, TINYP.PRE, to create the initial
VAM file for the model. In some ways
it is simpler than before; we do not
need to compute the AM matrix but

85

The TINYP.PRE File

File to create VAM file for TINYP, TINY with Prices
vamcreate vamp.cfg hist
vam hist b
dvam b
Bring in data on outputs and final demands
add out.dat
add pceR.dat
add impR.dat
Bring in the intermediate flow matrix
add flows.dat
Bring in the final demand vectors
add fd.dat
Bring in the value added vectors
add va.dat
fdates 2000 2000
The following are element-by-element vector divisions
vc depc = dep/out
vc capc = cap/out
vc indc = ind/out
Compute share vectors of final demands
vc invc = inv/invtot{2000}
vc govc = gov/govtot{2000}
vc exc = ex/extot{2000}
Read I-O coefficient matrices
add AM1995.dat
add AM2000.dat
add AM2010.dat
Interpolate matices for missing years
fdates 1995 2010
lint AM
show AM r 4
Keep value added coefficients, except labc, constant
dfreq 1
f one = 1.
index 2000 one depc
index 2000 one capc
index 2000 one indc
#Read labc for 1995, 2000, and 2010
add labc.dat
lint labc
Keep the structure of some final demand columns constant
index 2000 one invc
index 2000 one govc
index 2000 one exc
Compute final demand vectors for historical years
fdates 1995 2003
vc inv = invtot*invc
vc gov = govtot*govc
vc ex = extot*exc
store

rather just read it for 1995, 2000, and 2010. The one new command following the reading of these
matrices is simply

lint AM

where “lint” stands for “linearly interpolate.” This command will linearly interpolate5 the values of
each and every cell between the years where non-zero values are given. The same command is
applied a few lines further down to the labc vector. The lint command works over the range
specified by the last previous “fdates” command. When you have run this file through G7, you will
have created a new HIST.VAM file. Copy it to BASE.VAM with the following G7 command:

dos copy hist.* base.*

The MODEL.CPP file for the model with prices is on the disk as MODEL5.CPP; copy it to
MODEL.CPP. Near the top of the file, resizing functions for the new vectors and matrix have been
added. The new elements in the heart of the spin() function are shown in bold in the box below.

5 If this term is unfamiliar, it means to fill in missing data by drawing a straight line between two adjacent known
points.

86

Excerpt from MODEL5.CPP File

for (t = godate; t<= stopdate; t++) {
. . . .
// Start of code particular to TINY:

// Compute total value-added coefficient vector.
vac = depc+labc+capc+indc;
// Compute prices
PSeidel(AM, prices, vac, triang, 0.000001);
// The loop for convergence on pcetot and invtot.
while(Iteration < 20){

. . . .
}

// Set error for rhoadjustment
setrho = 'y';
if(t >= pceeqn.rhostart) pcefunc();
if(t >= impeqn.rhostart) importfunc(out);
setrho = 'n';
// Here when both Investment and PCE have converged
// Compute flow matrix in current prices
FM = AM % out;
FMN = prices % FM;
// Put output and final demands into nominal prices
outN = ebemul(prices,out);
fdN = ebemul(prices,fd);
pceN = ebemul(prices,pce);
invN = ebemul(prices,inv);
exN = ebemul(prices,ex);
imN = ebemul(prices,im);
govN = ebemul(prices,gov);
// End of code particular to TINY
. . . .
}

The first addition is to compute the total value added coefficient vector and then compute the prices
vector by a call to PSeidel(). This routine, which may be found in SEIDEL.CPP, solves the equations

p = p A + v

where p and v are row vectors. If the sectors of an input-output matrix have been arranged in an
almost triangular order for solution of the output equations by the Seidel method, the opposite order
will most likely be good for solving for prices. Hence, PSeidel() uses the same triang vector as does
Seidel() but takes the sectors starting from the end of the list and working towards the beginning.
The remaining new commands are just to calculate the values of the nominal vectors and of the
nominal flow matrix, FMN. This last calculation uses Interdyme’s % operator. It is used between a
vector and a matrix. If the vector is on the right, it multiplies each column of the matrix by the
corresponding element of the vector. If the vector is on the left, it multiplies each row of the matrix
by the corresponding element of the vector.

A final note on the economic interpretation of the prices we have calculated may be helpful. They
are, in fact, relative prices and the numeraire6 with price equal to 1.0 is the quantity of labor which
could be bought for one dollar in the year 2000.

To obtain truly nominal prices, we need to model inflation, and to model inflation, as we already
know from the Quest model in Part 2, we need to model employment and unemployment. Further,
we need to model savings behavior more carefully and consider the role of money and interest rates
in both savings and investment. All of these things can be modeled using the techniques we already
have, so they make a better exercise for you than subject for me.

We can introduce optimizing in Interdyme models in exactly the same way as we did in Quest. All
we need do is to specify the objective function and the regression coefficients to be varied in exactly
the same way as in a macro model and then check the “Optimizing” radio button on the panel of
window which comes up when we click Model | Run dyme. At present, optimization works only
with respect to the coefficients of macro equations, not for the coefficients of systems of detached-
coefficient equations. There are no problems of principle involved in extending the code to handle
coefficients of those equations also, just writing some housekeeping code. Finally, although there is
a “Stochastic simulation” radio button on that same panel, it does not work at present. Much of the
necessary code has been brought over to Interdyme, but somewhat more work is needed to activate
it.

It is tempting to go on elaborating the fictitious Tiny economy with all these features, but you surely
have a real model you are eager to get to work on, so we will give Tiny no further features, for there
are no more major new techniques that need to be explained. We do, however, need to deal with
how to use fixes to discipline Tiny or any model if it misbehaves.

Exercise

1. Make up employment and labor force data for Tiny, and estimate and put into the model
employment equations. Have the model compute unemployment. Modify the savings
equation so that the model provides employment for roughly 96 percent of the labor force,
though the exact level may vary cyclically.

6 Unit of value on which other values are based.

87

16.8. Fixes in Interdyme

For smaller models, the use of the .XG files described in section 16.1 in the discussion of IdBuild is
a quick and flexible way to input assumptions about the exogenous macro variables in the model.
Analogous to the use of .XG files, one can use G7 to write out the values of exogenous vectors and
matrices in the VAM file for the forecast period. However, as the model grows in size and
complexity, the need arises for more sophisticated ways to make assumptions about variables, both
endogenous and exogenous variables. The use of “fixes” has evolved to satisfy this need. Fixes are
assumptions about variables which are stored in a file, and read using a fixer program. A given
model (including historical data, equations and code) and a given set of fixes will determine a
scenario or simulation, in a way that will give reliable, repeatable results. Base and alternate
scenarios can be developed by suitable modifications of the fixes files, with both sets of fixes run
with the same model.

Fixes, as used here, are ways to make a model work the way we want it to, not necessarily the way
that emerges from its equations. The power that fixes give over a model can certainly be abused.
Nonetheless, they are extremely useful and powerful. Suppose, for example, we wish to consider the
impacts of some event which the model equations were never confronted with, like a natural disaster
or a massive overhaul of the health care system. Then a fix is the natural way to convey to the
model that it needs to work in a way not described by its equations. Another use of fixes is to force
the detailed data to agree with published aggregate data. The aggregate data is usually available up
to a current quarter or month, whereas sectoral data is only published with a lag, sometimes of
several years. Control totals can be applied to the vector elements, and the projection made using
the individual equations may be scaled. This is an example of a “group fix”, where a defined group
of elements of a vector may be fixed as a unit.

Interdyme has three types of fixes, those for macro variables, those for vectors and matrices, and a
special type which we have already seen for industry outputs. This section will primarily serve as a
useful reference to the fixes files and the commands that can be used within them. We will start with
describing the fixes for macro variables.

Macro Variable Fixes

Macro variable fixes are fixes applied to variables of type Tseries, which are defined using the
Idbuild program described above. These fixes work much like those of models built with the G-
Build combination, but also have much in common with the vector fixes described in the next
section. The program that handles the macro variable fixes is called MacFixer. The input to
MacFixer is a file prepared by the user with a text editor. It generally has the extension .mfx . Once
this file has been created, the fixes can be processed by running the program MacFixer The results
of this program are written to a "macro fix bank", which is essentially a G bank, which can be read
with G7. The root name (the part of the filename before the dot) of the macro fix G bank is passed
to MacFixer through a file named MACFIXER.CFG. It must also be passed to the simulation
program by the form that opens on choosing the command Model | Run Dyme .

The configuration file MACFIXER.CFG contains the name of the text input file, the root name of
the G bank file used for base values for the index and growth-rate fixes (this would normally be the
G bank created for use with the simulation program, such as HIST.BNK), the name of the G bank
which will contain the values of the fixes, and the name of the output check file. This last file shows

88

the values of each fix in each year, and serves as a check on the results in the binary file.

While it is up to the user to name files, it makes sense to give files for the same simulation the same
root name. A simulation that involves low defense expenditures, for example, could have a G bank
file called LOWDEF.BNK, and a .mfx file called LOWDEF.MFX.

Several varieties of macrofixes that may be given. They can generally be divided into absolute or
“hard” fixes, and modifier or “soft” fixes. The syntax for the hard fixes (“ovr”, “ind” and “gro”) is
given first.

ovr overrides the result of the equation with the value of the time series given. Values between
given years are linearly interpolated. In the example below, the macro fix program would
calculate and override a fix series that starts in 1992, ends in 2000, and moves in a straight
line between the two points. For example

ovr uincome$
 92 154.1
 2000 182.3;

would override the value of the forecast of uincome$ with the values shown for the years
shown. Note that year can be either 2-digits or 4-digits (they are all converted to 4-digits in
the program). If uincome$ were an exogenous variable, then it must receive a fix. If it were
endogenous, the above fix would replace the values forecasted by the equation.

ind is a variety of the override fix that specifies the time series as an index. There must be data in
the VAM file for the item being fixed up until at least the first year of the index series
specified. The value for the item in that year is then moved by the index of the time series
given by the fix lines. For example,

ind invtot
 2003 1.0 1.03 1.08 1.12 1.15
 2008 1.21 1.29 1.31

will move the value of invtot in 2003 forward by the index of the series given, and will
replace the calculated value of invtot by this value when the model is run.

gro is a type of override fix that specifies the time series by growth rates. For the growth rate fix
to be legal, there must be data in the VAM file up until at least the year before the first year
of the growth rate fix. Missing values of the growth rates are linearly interpolated.

gro wag01
 1993 3.1
 2000 3.4;

stp is a type of override fix that specifies the growth rate in a series of steps. It is like “gro”
except that a growth rate continues until a new one is provided. A value for the final period
is necessary.

stp wag01
 1993 4.1
 1995 4.5
 2000 5.0;

The next two types of fixes (“cta” and “mul”) are the modifier or “soft” fixes

89

cta does a constant term adjustment. That is, it adds or subtracts the value of the time series to
the result of an equation or a previous fix. The time series is provided by the fix definition.
For example,

cta nonagincome
 1992 .0001
 1995 200
 2000 180;

is a constant term adjustment for nonagricultural income from 1992 to 2000. Intermediate
values are of course linearly interpolated.

mul multiplies the equation's forecast by a factor specified by the data series on the following
line. For example:

mul ulfi$
 1992 1.0
 1995 1.05
 2000 1.10;

multiplies the forecast results for the macrovariable ulfi$ by the factors shown. Values of the
multiplicative fix between the years shown are linearly interpolated, as usual.

Next is the “rho” fix, which plays a very important role for macrovariables.

rho is the rho-adjustment fix, familiar from macromodels. It may, in fact, be considered a fully
legitimate part of the model. The format is:

rho <depvar> <rho_value> [rho_set_date]
where

depvar is the name of the dependent variable
rho_value is the value of rho.
rho_set_date is the year in which the rho-adjustment error is to be calculated. If none
is provided, it is set in the year specified by the Macro Equation Start Date specified
on the form when starting a run.

for example:
rho invtot .40 2003

tells the model to apply a rho-adjustment to the variable invtot using the value .40 for rho,
and starting the rho-adjustment in 2003.

A rho fix with a rho_set_date works like a "skip" (see below) in years before the
rho_set_date. Unlike rho fixes in macromodels, an endogenous variable can have a "rho" fix
in conjunction with and a "cta" or "mul" fix. The rho-adjustment is applied before the other
fix.

skip is the simplest type of fix. It simply skips the equation and uses the values in the model G
bank. For example:

skip invn$35

would skip the equation for the macro variable invn$35, and use the value already in the
model G bank.

90

The next several fixes (“dind”, “dgro” and “dstp”) are the family of dynamic fixes. Unlike the “ind”,
“gro” and “stp” fixes which establish the fix values before the model is run, and write these values to
the fixes file, dynamic fixes usually begin in some future year, and base the index or growth rate on
the value of the variable in that year, as it has been calculated by the model. In other words, the
same fix will probably yield different results in different model runs.

dind is the “dynamic index fix”. This fix can start in any year, and does not rely on historical data
being present in the databank. Rather, the fix is calculated during model solution when the
first year used is specifying the fix is reached. For example, if the fix is

ind invtot
 2005 1.0 1.03 1.08 1.12 1.15 1.20

and a forecast is begun in 2003, then the equation will be used for 2004 and 2005, but the
value of invtot in 2006 will be 103 percent of whatever value was calculated for 2005.

dgro is the dynamic version of the growth rate (“gro”) fix. This fix can start in any year, and does
not require data to be available in the databank for the starting year of the fix. The growth
rate is always applied to the value of the variable in the previous period.

dstp is the dynamic version of the “stp” fix.

The final three types of fixes (“eqn, “fol”, and “shr”) are very powerful. They enable the model user
to play some of the roles of the model builder. Using an equation fix, a replacement equation for a
variable can be specified in the fixes file, which can use any legal G7 expression of other
macrovariables, vector variables and matrix variables. The body of the fix plays a special role in the
fix, as shown below. Follow (“fol”) and share (“shr”) fixes are really special variants of the more
general equation fix, but the need for them is so common that they have been made available as
special types. We will now describe these fixes for macrovariables.

eqn is the equation fix. This type of fix lets you dynamically introduce a new equation
relationship into the model at run time. The advantage of this type of fix is that users of the
model who are not programmers can introduce their own assumed relationships into the
model, without having to change the model program code. It is also helpful for prototyping a
model, where you want to quickly try out different equation relationships to see how they
work, before coding them into the model.

The equation fixes use the same expression syntax as used in the “f” command and other
commands in G7. The format for equation fixes for macrovariables is:

eqn <Macroname> = <expression>
<year> <value> [<value> <value> ...]
<year> <value> [<value> <value> ...]

where: <Macroname> is a legitimate name of a macrovariable, <expression> is a legitimate

91

expression, as described below, and the <year> <value> entries are in the same format as the
data for other fixes, but indicate the years for which the equation fix is to take effect. They
also represent the time series for a special variable called fixval, which can be used within the
equation expression. This fixval variable can be used wherever a vector or macrovariable
could be used.

Just about any expression that is legal in G7 is legal for an equation fix, except that only a
subset of functions are implemented. These functions are: @cum, @peak, @log, @exp,
@sq, @sqrt, @pow, @fabs, @sin, @pct, @pos, @ifpos, @pct, @rand and @round.

Lagged values of any order can be used, with the constraint that they must not be before the
starting year of the model G bank (DYME.BNK). Macrovariables are read directly from
memory. Lagged values of vector variables are read from the VAM file. Therefore, you can
use a lagged value of any vector as far back as the starting date of the VAM file, and you are
not limited by whether or not that vector has been declared to store lagged values in memory
in VAM.CFG.

Examples:

Make the T bill rate equal to the average inflation plus some percent,
specified in “fixval”.
eqn rtb = .34*gdpinf + .33*gdpinf[1] + .33*gdpinf[2] + fixval
 2016 1.0
 2030 1.5;

Though it is not necessary to know in order to use the function, you may be curious as to where the
equation is stored and how it is calculated. To continue with the example just given, the Macfixer
program stores a fix by the name of rtb:e and the values of fixval as the value of the fix. Then at the
end of index file for this bank (MACFIXES.IND if MACFIXES is the name of the bank), where it
does not interfere with G7’s use of the bank, it labels and stores the text of the equation. When the
fix is to be applied, this text is read and the value calculated with code borrowed from G7 for
calculating f commands.

92

fol is the follow fix. The follow fix allows you to specify that a macrovariable should move like
some other quantity, which may be specified as a general expression involving vector and
macrovariables, just like the equation fix.

The general format for the follow fix is:

fol <Macroname> = <expression>
<year> <value> [<value> <value> ...]
<year> <value> [<value> <value> ...]

The variable “fixval” should not be used in the follow fix expression. Its purpose is to
specify a growth rate to add to the growth of the expression.

For example, if we would like to specify that Medicaid transfer payments grow like real
disposable income per capita, plus 0.1 per cent, we could write:

fol trhpmi = di09/pt
2016 0.1
2040 0.1

shr is the share fix. This fixed is used to specify that the macrovariable should be a certain share
of another variable or expression, with the share specified by the fix value. Actually, the
“share” is just a multiplier, so it can be any number.

The general format of the share fix is:

shr <Macroname> = <expression>
<year> <value> [<value> <value> ...]
<year> <value> [<value> <value> ...]

In the share fix, the fix value is the multiplier or share to multiply by the right hand side
expression.

When the input file specifying the fixes as described above is ready, it should be saved with “.mfx”
as the extension of its file name.

On the G7 main menu, then click Model | Run Dyme Model, and the fixer programs (MacFixer and
Fixer) will be run before running the model. As described previously, the macro fixes are written
into a file which is structured like a G bank. For example, in the MACFIXER.CFG shown below for
Tiny, the name of the output fixes bank is “MacFixes”. Therefore, MacFixer will create the files
MACFIXES.BNK and MACFIXES.IND, which may be assigned and viewed in G7 just like any
other G bank.

93

MACFIXER.CHK
Input fix file ;Macfixes.mfx
Output fixes bank ;MacFixes
Model G bank ;tmp
Output check file ;MacFixer.chk

The names of the series in this G bank are formed by concatenating the series name with a colon
followed by a single letter indicating the type of fix to be applied to that variable. Thus, the fix

cta invtot
2004 10.
2010 17.

will put into the MACFIXES data bank a variable by the name invtot:c whose values will be linearly
interpolated between 2004 and 2010. If you create a file by the name of MACFIXES.MFX with
exactly this fix in it, save the file and click Model | Run Dyme Model to create the MACFIXES G
data bank, you can then open up the bank, and give G7 the commands:

bank macfixes b

lis b

and see that the bank has a variable by the name of invtot:c. You can then do

type b.invtot:c

and see the interpolated add factor. Alternatively, you can look in the MACFIXES.CHK file and see
Fix Number 1: cta fix on invtot
 2003 10.00 11.00 12.00 13.00 14.00
 2008 15.00 16.00 17.00

which should assure you that the interpolation has been done correctly. This file also serves as a
record of the assumptions made for a particular run.

The correspondence between fix types and codes suffixed to the variable names are: skip ('k'), ovr
('o'), cta ('c'), ind ('i'), gro ('g'), stp ('s'), rho ('r'), and eqn (‘e’).

Macro fixes provide an alternative way to supply values of exogenous variables. Exogenous
variables may be put into the "hist" bank in the process of running Idbuild. If the variable appears in
no .sav file for a macro equation, then it is included in the PSEUDO.SAV file. The standard way of
providing the values of the exogenous variables is then through "update" or other commands in G7.
Another possibility for providing exogenous values is to have a special run of G7 with the "hist" or
other bank as the workspace bank. Finally, one can provide the exogenous values as macrofixes.
For example, if we want disinc to be an exogenous variable, then -- however we are going to provide
the values -- we need the statement

f disinc = disinc

in the PSEUDO.SAV file. To use the macrofix method of assigning values, we need in the code of
the model the statements

depend=disinc[t];
disinc[t] = disinc.modify(depend);

We could then provide the values with "ovr", "ind", "gro", or "stp" commands to the macrofix
program, for example, by

94

gro disinc
 1995 3.0
 2000 3.5
 2005 4.0;

This method has the advantage of keeping all the fixes which constitute a scenario in one place. It
also allows the use of the "gro" and "stp" fixes, which may be convenient. It has the disadvantage of
adding an additional series to the banks which constitute the model and an additional statement
within the model.

Vector and Matrix Fixes

The vector fixes are more complicated than macro fixes because they can apply to individual
elements of a vector, to the sum of a group of elements, or to the sum of all elements in the vector.
However, the format of the vector fixes is similar to that of the macro variable fixes, described
above. Matrix fixes at the current version are still rather simple, one fix being applicable to only one
cell of a matrix. The preparation of the vector and matrix fixes is the work of the Fixer program.

Unlike the macro fixes, which are automatically applied when a macro regression equation is
calculated, vector and matrix fixes are applied where the model builder specifies. At the point where
the fixes for the vector x should be applied, the model builder must put into the program the line

x.fix(t);

The input to Fixer is a file prepared by the user in a text editor. It should have the extension .vfx.
Fixer also reads the definitions of static groups of sectors and writes them into the GROUPS.BIN
file which can be used both by the simulation program and by G7. To use the Fixer program, it is
essential that the model's VAM.CFG file should have a vector called "fix" with enough rows to allow
one for each fix. As Fixer reads the fixes from the input file, it stores the numerical values of the
fixes into this "fix" vector in the vam file. It also creates a "fix index" file, which will have the
extension .fin and tells the simulation what to do with each fix. Finally, it produces a binary file with
the definitions of groups, called GROUPS.BIN. If G7 has already produced a GROUPS.BIN file,
Fixer reads it and may add to it.

For vectors, fixes may apply to a single element or a group of elements. The concept of a “group” is
central to the working of Fixer. Basically, a group is simply a set of integers, usually representing
sectors in the model. Defining groups is useful because we often want to impose a fix on a group of
elements in a vector. For example, we may want to control the total exports of the chemical
manufacturing sectors. We might then create a group named “chem” which would contain the sector
numbers of all the sectors in question. The command for defining a group for Fixer is “grp
<groupname>”, where the groupname can be a number or a name. The sectors defining the group
are then entered on the next line. For example:

grp 1
 7 10 12

creates a group called “1” consisting of the sectors 7, 109 and 12. The '-' sign means consecutive
inclusion. Thus:

group zwanzig
 1-20

95

consists of the first twenty integers. Parentheses mean exclusion. Thus:
group duo
 :zwanzig (2 – 19)

makes the group "duo" consist of the integers 1 and 20.

When a group is referenced after it is defined, its name must be preceded by a colon, as shown when
"zwanzig" was used in the definition of "duo" above. Names of groups are case sensitive; commands
for Fixer must be lower case. Groups can be defined anywhere in the input file before the first time
you used them. If you try to redefine an existing group, the program will complain, unless the new
group has the same or less elements than did the old group. References to other groups can be used
in new group definitions only if the groups referenced have already been defined.

Interdyme provides a number of ways for a fix to work. In all of them, a time series is specified by
the fix. The forms of the fix differ in how they obtain and in how they apply this time series. The
basic format of the input file for a vector fix is:

<command> <vectorname> <GroupOrSector>

followed on the next line by a year and some values of the fix. The basic format of the input file for a
matrix fix is:

<command> <matrixname> <row> <col>

The fixes available for vectors and matrices are for the most part the same as those for
macrovariables, with the exception that you need to provide the <GroupOrSector> for a vector fix,
and the <row> and <col> for a matrix fix.

ovr overrides the result of the equations with the value of the time series given. Again,
intermediate values are linearly interpolated. In the example below, the fix program would
calculate and override fix series that starts in 1992, ends in 2000, and moves in a straight line
between the two points. For example,

ovr ex 10
 1992 154.1
 2000 182.3;

would override the value of the forecast of element 10 of the "ex" vector (probably exports)
with the values shown for the years shown. As an example of a matrix fix,

ovr am 1 9
 1990 .23
 1995 .26
 2000 .28;

would override the value of the A-matrix in the Vam file for element (1,9), from 1990 to
2000. As before, missing values are linearly interpolated.

ind, dind

is a variety of the override fix that specifies the time series as an index. There must be data in
the vam file for the item being fixed up until at least the first year of the index series
specified. The value for the item in that year is then moved by the index of the time series

96

given by the fix lines. For example,
ind pceio :zwanzig
 1982 1.0 1.03 1.08 1.12 1.15
 1997 1.21 1.29 1.31 1.34;

will calculate the sum of the elements of the pceio vector included in the group "zwanzig" in
1982, will move that sum forward by the index of the series given, and will impose that
control total on the those elements when the model is run.

The “dind” version of the fix can start in any year, and indexes the series to the value of the
expression in the starting year of the fix.

gro, dgro

is a type of override fix that specifies the time series by growth rates. For the growth rate fix
to be legal, there must be data in the vam file up until at least the year before the first year of
the growth rate fix. Missing values of the growth rates are linearly interpolated.

gro out 10
 1983 3.1
 2000 3.4;

The “dgro” version of the growth rate fix can start in any year, and always calculates the
series in the present period based on the value in the previous period.

stp, dstp

is a step-growth fix. It is like “gro” except that a growth rate continues until a new one is
provided. A value for the final period is necessary.

stp out 1
 83 4.1
 95 4.5
 2000 5.0;

The “dstp” version is the dynamic version, which can start in any year. It is just like “dgro”,
except for the method of interpolation of the fix values.

mul multiplies the equation forecast by a factor specified by the data series on the following line.
For example,

mul im 44
 1992 1.0
 1995 1.05
 2000 1.10;

multiplies the forecast results for imports of sector 44 by the factors shown. Values of the
multiplicative fix on imports between the years shown are linearly interpolated.

cta does a constant term adjustment. That is, it adds or subtracts the value of the time series to
the result of the equations. The time series is provided by the fix definition. For example,

cta def :Alice
 1992 .0001
 1995 200
 2000 180;

is a constant term adjustment for defense expenditures of all sectors in the Alice group.

97

Intermediate values are linearly interpolated.

eqn The equation fix for vectors works in the same way as the version for macrovariables, with
the exception that the name of the vector must be separated from the sector number by a
space. For example:

Make the pce deflator for category 3 grow like the aggregate PCE deflator,
based on the ratio in 1997, from 1998 to 2010.
eqn cprices 3 = cprices3{1997}/apc{1997} * cprices3
 1998 1
 2010 1
Make corporate profits in sector 1 remain a constant share of total
corporate
profits, equal to the share in 1997:
eqn cpr 1 = cpr1{1997}/vcpr{1997} * vcpr
 1998 1
 2010 1

fol The follow fix specifies that an element or group of a certain vector should follow the
expression on the right, plus or minus a certain growth rate, which can be specified in the
body of the fix. It is often used to make imports of a certain commodity grow like domestic
demand. For example, the following follow fix makes crude petroleum imports grow like
domestic demand, plus 0.2 percent per year:

fol im 4 = dd4
1998 0.2
2030 0.2

shr The share fix takes the value of the body of the fix (fixval), and multiplies the right hand
expression by it, before assigning the value to the left hand side variable or group. Like the
follow fix, a typical use for this fix might be in controlling the relation between imports and
domestic demand. The example below specifies the share of domestic demand for imports of
Radio, television and video equipment:

shr im 42 = dd42
1998 .9
2000 .92
2030 1.0

When the input file as described above is ready and the FIXER.CFG file calls for its use, type "fixer"
at the DOS prompt to invoke the Fixer program. Fixer is also run when you choose the menu option
Model | Run Dyme Model in G7.

98

Output Fixes

The output fixes allow the values of output specified in the VAM file to override values computed by
the input-output equations. There is then the question of what to do with the difference. Interdyme
offers two possibilities: add any excess demand to imports or simply ignore the difference. The
options are specified in column 18 of the SECTORS.TTL file, which

is where the names of the input-output sectors are. The options for this column are:

e use the equation
i add the difference to imports
d put the difference in a vam vector named "dump", where nothing is done with it, but

it can be displayed.

Answers

3.2 The new outputs are
166.14 55.21 222.30 763.57 426.48 206.41 812.58 148.00
and the primary resources required to produce them are
317.24 1351.84 268.34 226.58.

3.3 The net export of depreciation is -5.73.
3.4 The new price vector is (.92 .96 .89 .90 .71 .93 .96 1.00).
3.5 Net export of greenhouse gas production is -31.87.

99

100

CHAPTER 17. MATRIX BALANCING AND UPDATING

17.1. The RAS Algorithm

Making an input-output matrix from scratch for a country is a major undertaking often involving a
group of ten or more people for a number of years. By the time the project is finished, the matrix
refers to a year that is apt to seem part of ancient history. Hence the question arises: “Given an
input-output table for a base year, is there a way to update it to a more recent year with less work
than making the table from scratch?” In this updating, one usually has some data for the more recent
year. One wants the matrix for this year, which we may call the target year, to conform to all those
data.

Usually those data would include industry outputs, major GDP components, and value-added by
industry. The value-added by each industry can then be subtracted from its output to give the total
intermediate inputs by each industry. Thus, we would know the row total for each industry and the
column total for each final demand column and for the intermediate use of each industry. An
obvious check on the accuracy of this information is that the sum of the row totals equals the sum of
the column totals. We will assume that this condition has been met, although meeting it is not
always easy except by a rough scaling. Thus, we have the margins or frame for the table for the
target year.

An initial guess of the inside of the table for the target year can then be made by assuming constant
coefficients for the input-output coefficients and for the shares in each of the final demand vectors.
More sophisticated initial estimates could also be made. One could use, for example, consumption
functions to “forecast” the purchases of households. However the initial inside elements of the table
are estimated, it is almost certain that they will not have the right row and column sums. Adjusting
them to make them conform to these control totals is generally done by what has come to be called
the RAS procedure, a name derived from notation in Richard Stone’s description of the method in A
Computable Model of Economic Growth (Chapman and Hall, London, 1962)7.

The method is extremely simple in practice. First scale all of the rows so that each has the correct
total. Then scale all the columns so that each has the correct total. The row sums are then probably
no longer correct, so scale them again, and then scale the columns again, and so on until the scaling
factors have converged to 1.0. The matrix at that point has the desired row and column sums. If At
denotes the flow matrix at stage t of the operation, Rt denotes the row scaling factors at step t arrayed
as the diagonal elements of an otherwise zero matrix, and St denotes the column scaling factors
similarly arrayed, then the flow matrix at the beginning of stage t+1 is

At+1
=Rt At S t (17.1.1)

The expression on the right gave rise to the name RAS, which may be pronounced as the three
letters, or simply as “ras”.

7 The idea had been mentioned by Leontief in the 1941 edition of Structure of the American Economy, but the idea
seemed to pass unnoticed until applied by Stone.

101

17.2. Convergence of the Algorithm

The practice is simple, but will the process converge? To answer that question, we will need some
notation. Let the original matrix be A, whose elements we will denote by ai j, let b be the positive
vector of required row sums and c be the positive vector of required column sums. The first
condition is that A be non-negative. The second is simply that there must exist at least one matrix
with zeroes where A has zeroes and positive numbers where A has positive numbers. This matrix
must also have row sums equal to b and column sums equal to c.

Notice that this second condition did not assume a solution of the form we are seeking, that is,
derived from A by scaling the rows and columns. It does, however, have some important
implications. The first is that the sum of the elements of b must be the same as the sum of the
elements of c. A further implication is that, if it is possible rearrange the rows and columns of A so
that an all-zero block appears, then the corresponding subtotals of b and c must be consistent with
those blocks remaining zero while the other cells are positive. For example, if

A=(1 0
1 2)

then we must also have b1 < c1 and b2 > c2 . In practice, one insures that the first implied condition
(the equality of the sum of row sums and column sums) is met before beginning the RAS
calculations. If they fail to converge, then one looks for inconsistencies along the lines of the second
implication.

The proof of the convergence of the RAS procedure under these general conditions requires a
complicated notation. The essence of the proof, however, can be seen in the special case in which A
is all positive, and we will limit ourselves to that case. (For the general case, see M. Bacharach,
Biproportional Matrices. Cambridge University Press, 1970.)

We will start the process by scaling the rows, then the columns, and so on. In the first row scaling,
we choose the first-round row-scaling factors by

r i
(1)

=b i/∑
j

a ij (17.2.1)

where the superscript on the r refers to the iteration number. Then we compute the first-round
column scaling factors by

s j
(1)

=c j /∑
i

r i
(1)a ij (17.2.2)

Then we come back to compute the second-round scaling factors,

102

r i
(2)

= bi /∑
j

ri
(1)a ij s j

(1)

= bi /∑
j

bi

∑
k

a ik

aij s j
(1)

= 1/∑
j

a ij

s j
(1)

∑
k

a ik

 (17.2.3)

Thus, we can see that the second-round row factors are reciprocals of convex combinations of the
first-round column factors, that is, they are reciprocals of a weighted average of those first-round
column factors with positive weights which sum to 1. Thus,

max
i

ri
(2)

≤1/min
j

s j
(1)

 and min
i

r i
(2)

≥1/max
j

s j
(1)

(17.2.4)

By similar reasoning,

max
j

s j
(2)

≤1/min
i

r i
(1)

 and min
j

s j
(2)

≥1/max
i

r i
(1)

 (17.2.5)

The inequalities in 17.2.5 imply 17.2.6

1/max
j

s j
(2)

≥min
i

r i
(1)

 and 1/min
j

s j
(2)

≤max
i

r i
(1)

(17.2.6)

Then combining the first inequality of (17.2.4) with the second of (17.2.6) and the second of (17.2.4)
with the first of (17.2.6) gives

max
i

ri
(2)

≤1/min
j

s j
(1)

≤max
i

r i
(1)

and min
i

r i
(2)

≥1/max
j

s j
(1)

≥min
i

r i
(1)

(17.2.7)

In other words, the biggest element of r diminishes from iteration to iteration while the smallest
rises. Since A is all positive, all of the inequalities in (17.2.4) through (17.2.7) will be strict
inequalities unless all the elements of r are equal or all the elements of s are equal. But if they are all
equal, they must be all be equal to 1, for otherwise the scaling would increase or decrease the total of
all elements in the matrix, contrary to the fact that, after the first row scaling, the sum of all elements
remains equal to the common sum of the vectors b and c. Since the sequences of r(k) and s(k) vectors
both lie in closed, bounded sets, they have limit points. Can these limit points be anything other than
the vectors that are all 1's? No, because at any such point, one more iteration of the process would
bring a finite reduction of the maximum element (and a finite increase in the minimum element) of
each vector. (This is where we use the all positive assumption to have strict inequalities in (17.2.7).)

Thus, for points sufficiently close to these limit points, the next iteration must also bring lower
maximal and higher minimal elements than those of the limit point, contrary to the limit point being

103

a limit point. Therefore the unique limit of each sequence of vectors is a vector of ones.

Thus the convergence is proven for the case of all positive A. The proof is similar for A with some 0
elements, but in this case, it may require several iterations to get a finite reduction in the maximal
elements of r and s.

In practice, the condition that the sum of b equals the sum of c is checked and assured before the
iterative process begins. The initial r and s vectors should be reported by the program because they
often indicate discrepancies between b and c vectors and the initial A matrix. Once the iterations
start, the largest and smallest elements of the r and s vectors should be reported every five or ten
iterations. It is common to observe “wars” between a row control and a column control when one
element looms large in both its row and column, but the control totals for the two are quite different.
Such “wars” are symptomatic of a failure of the second assumption and an indication that the b and
c vectors should be revised.

It should be noted that the RAS procedure works for rectangular matrices just as well as for square
ones. It is also useful in making input-output tables and the bridge matrices used to convert
investment by investor to investment by product bought or consumption by consumer categories to
consumption by product categories used for productive categories.

17.3. Preliminary Adjustments Before RAS

It often happens in updating or making tables that one has better information about some cells than
about others. For example, in updating the a table with a Glass row, we may have quite good
information on the sales of glass products to Beer, because we have information on the production of
glass beer bottles. In this case, we can simply remove the “relatively well-known flow” from both
its row and column control, perform the RAS balancing on the remaining flows, and then put back in
the known flow.

The problem with this procedure is that the “relatively well-known flows” tend to be big flows. If
they are not quite consistent with the row or column controls, then removing them requires that all of
this inconsistency should be attributed to changes in the remaining small flows. Thus, the small
flows can be pushed about rather considerably. This problem can be reduced by a preliminary
scaling of the relatively well-know flows before removing them from the process. To describe this
adjustment, let Ri be the sum (in the base year) of the relatively well-known flows in row i ; Si , the
sum of the other flows; and Bi , the row control. Then let

α=
Ri

Ri+S i
 (17.3.1)

and define zi as the solution to

S i z i+R i z i
α
=B i (17.3.2)

The value of zi which satisfies (17.3.2) is readily found by Newton’s method. We then scale all the
relatively well-known flows by z i

α
and all the other flow by zi . By (17.3.2), the row will then

have the correct sum. By (17.3.1), z i
α

 is closer to1.0 than is zi ; that is to say, the relatively well-
known flows are scaled less than the other flows. They are however, scaled somewhat. If they

104

account for a small fraction of the total of all flows in the row, they will be scaled but little; if they
account for much of the row, they will be scaled almost as much as the other flows.

After this preliminary scaling, the known flows can be removed for the rest of the RAS process.
While this scaling may seem a bit arbitrary, in practice it has given plausible results in many
applications. In fact, it worked so well that the first person working with it, Thomas Reimbold, felt
that the z must stand for Zauber, “magic” in German, his native language. The procedure is therefore
often referred to as the Zauber process.

105

106

CHAPTER 18. TRADE AND TRANSPORTATION MARGINS AND INDIRECT TAXES

18.1. Trade and Transportation Margins

A perennial problem in applied input-output analysis is the treatment of trade and transportation
margins and of indirect taxes. The problem is nicely illustrated with transportation costs. If output
is valued at the producer’s price — the price at the factory gate, so to speak — then the cost of
transporting the goods to the user must be considered to be paid separately by the purchasing
industry. Thus, the cost of the rail services used in hauling the coal used by electric power plants
shows up as an input of rail transportation into electric generation. The cost of hauling generation
equipment to and from the utilities’ repair facilities would appear in the same cell. Similarly, the
cost of hauling coal to a steel mill and of hauling iron ore to the same mill will appear in the same
cell.

The problems with this treatment are:

1. It puts quite diverse activities into the same cell; and

2. The table does not reflect the way the rail industry thinks about its business. It thinks in
terms of products hauled — and prepares statistics on products hauled, not on industries to
which it delivers.

Despite these problems, this treatment is the one most commonly followed. All of the problems
apply with equal force to all the other transportation margins and to wholesale and retail trade
margins.

One alternative is to change the measure of output of the industry to include the cost of delivering
the product to the user. One disadvantage of this treatment is that it removes the numbers in the
input-output table one step further from the numbers in terms of which people in the industry think,
namely in producer prices. Another problem is that transportation margins may be very different for
a dollar’s worth of product delivered to different users. The transportation cost of oil delivered to an
electric utility by pipeline from a marine terminal may be very different from delivering by truck or
rail to a small industrial user.

A better alternative is to add another dimension to the input-output tables. Thus, corresponding to
each cell of the tables we have considered so far there would be a vector. The first entry in the
vector would be the transaction in producer prices; the second entry would show the rail margin; the
third, the truck margin; the fourth, the air freight; and so on through the wholesale and retail trade
margins. In effect, we would have a table with layers, the first layer for the producer price
transaction, the second for the rail margins, and so on. In fact, the benchmark tables for the United
States are prepared with all this information. It has not been commonly used because the size of the
matrices involved has been, until fairly recently, large relative to the power of the computers
available. That constraint has now been effectively removed, and we may ask, How would we in
fact compute with such a layered table?

If A represents the coefficient matrix in producer prices and Ti represents the ith layer of
transportation and trade margin coefficients, then the fundamental input-output equations become

q=Aq+∑
i

S i T i q+ f =(A+∑
i

S iT i)q+ f (18.1.1)

where Si is a matrix with 1's in the row which produces the service distributed by layer i and

107

elsewhere all zero. The matrix is, in fact, the matrix in producer prices with which it has been
traditional to compute. What is gained by distinguishing the layers is not a correction of the
traditional computations but rather a better description of what the flows are and a better basis for
studying changes in coefficients in the Ti matrices.

18.2. Indirect Taxes, Especially Value Added Taxes

Indirect taxes such as property or franchise taxes are treated as a component of value added, along
with depreciation, profits, interest, and labor compensation. Excise taxes such as those on gasoline,
alcohol, and tobacco are usually similarly treated, but with less justification, because some uses of
these products are exempt. For example, gasoline used to power agricultural machinery or exported
whiskey or cigarettes are exempt. Thus, these taxes should also be treated as a layer of the table,
since they are not uniform for all cells. Retail sales taxes are usually treated as a component of value
added by Retail trade. This treatment assumes that the tax is proportional to the retail margin in all
products in all cells. In fact, there are different tax rates on different products, and some products are
sold by retail establishments for intermediate use without retail sales tax.

The greatest problems, however, have probably been created by the value added tax (VAT) in the
tables of countries which use this tax, a group that now includes all members of the European Union
and numerous other countries. Producers pay VAT on the value of their sales but may deduct the
VAT paid on their purchases. VAT is not charged on certain products, such as health services or
exports. Many European input-output tables have been published in producer prices plus non-
deductible VAT. That practice meant that the cell for paper products sold to the hotel industry did
not contain VAT, because the VAT on those sales was deductible from the VAT owed by the hotels.
The cell for paper products sold to hospitals, however, contained VAT, because the hospitals owed no
VAT from which the VAT on the paper products could be deducted. Similarly, since households owe
no VAT, they cannot deduct the VAT on the paper products they buy, so the VAT is included in the
cell showing the sales of paper products to households. Thus, the cells in the paper products row of
such a matrix have very diverse levels of VAT content. That means that the valuation of the product
across the row is not homogeneous. It takes more wood pulp to make a dollar’s worth paper towels
used by a hotel than to make a dollar’s worth of paper towels used by a hospital or household,
because a significant portion of their dollar goes to VAT. This heterogeneity in the pricing in the row
is obviously detrimental to the accuracy of the input-output calculations. The solution to the VAT
problem is simply to create a VAT layer of the table.

108

CHAPTER 19. MAKING PRODUCT TO PRODUCT TABLES

19.1. The Problem

Makers of input-output tables often find data on inputs not by the product into which they went but
by the industry that used them. An industry is a collection of establishments with a common
principal or primary product. But besides this primary product, any one of these establishments may
produce a number of secondary products, products primary to other industries. Establishments
classified in the Cheese industry may also produce ice cream, fluid milk, or even plastic moldings.
Consequently, the Cheese industry may have inputs of chocolate, strawberries, sugar, plastic resins,
and other ingredients that would appall a connoisseur of cheese. The inputs, however, are designated
by what the product was, not by what industry made them. Similarly, data on the final demands,
such as exports and personal consumption expenditure, is by product exported or consumed, not by
the industry which made it. Thus, input-output matrices usually appear in two parts. The first part,
called the Use matrix, has products in its rows but industries in its columns. The entries show the
use of each product (in the rows) by each industry (in the columns.) The second part, called the
Make matrix, has industries in the rows and products in the columns; the entries show how much of
each product was made in each industry. (Some statistical offices also publish instead of the Make
matrix a Supply matrix, which is product by industry like the Use matrix, but contains the
information in the Make matrix, plus information on margins and taxes on domestic production and
imports. This format is now recommended by the 2008 System of National Accounts).

How can we use these two matrices to compute the outputs of the various products necessary to meet
a final demand given in product terms?

One way is to consider that each product will be produced in the various industries in the same
proportion as in the base year of the table. This assumption is used, for example, in computable
general equilibrium models based on social accounting matrices that explicitly show the Make and
Use matrices. This assumption, however, can produce anomalous results. In the above example, an
increase in the demand for cheese would automatically and immediately increase demand for
chocolate, strawberries, and sugar. These are not common ingredients in most varieties of cheese!
There must be a better way to handle the problem.

This highly unsatisfactory situation has led to efforts to make a product-to-product matrix. Indeed,
the problem is so well recognized that the “Transmission programme of data” of the European
system of accounts requires that all national statistical offices of the member states of the European
Union transmit “symmetric” input output tables to Eurostat every five years. No real advice,
however, is offered by Eurostat to the statistical offices on how to make these product-to-product
tables. This chapter offers a valuable tool for the process. (“Symmetric” is here intended to mean
that the same concepts are used in both rows and columns. Its use as applied to these matrices is
both highly confusing and not descriptive. Since it is the nature of the rows and columns that is the
same, not their measure, symphysic would be both a better characterization and less confusing.)

To make such a matrix, we need to employ an additional assumption. There are basically two
alternatives:

1. The product-technology assumption, which supposes that a given product is made with the

109

same inputs no matter which industry it is made in.

2. The industry-technology assumption, which supposes that all products made within an
industry are made with the same mix of inputs.

The System of National Accounts 1993 (SNA) reviews the two assumptions and finds (Section
15.146, p. 367)

On theoretical grounds, the industry technology assumption performs rather poorly" and is
highly implausible.

And in the following Section 15.147:

From the same theoretical point of view, the product (commodity) technology model seems to
meet the most desirable properties It also appeals to common sense as it is found a priori
more plausible than the industry technology assumption. While the product technology
assumption thus is favoured from a theoretical and common sense viewpoint, it may need some
kind of adjustment in practice. The automatic application of this method has often shown results
that are unacceptable, insofar as the input-output coefficients appear as extremely improbable or
even impossible. There are numerous examples of the method leading to negative coefficients
which are clearly nonsensical from an economic point of view.8

Since 1967, the Inforum group has used a "semi-automatic" method of making "some kind of
adjustment" in calculations based on the product-technology assumption, as called for by the SNA.
We have used it with satisfactory results -- and without a single negative coefficient -- on every
American table since 1958. The method was published in Almon 1970 and in Almon et al. 1974.
Despite this long and satisfactory use of the method, it seems not to have come to the attention of the
general input-output community. In particular, the authors of the section quoted from the SNA seem
to have been unaware of it. This chapter illustrates the method and expands the previous exposition
with an example, provides a computer program in the C++ language for executing the method, and
presents some of the experience of applying the method to the 1992 table for the USA.

19.2. An Example

An example will help us to visualize the problem. The Table 19.2.1 below shows the Use matrix for
a 5-sector economy with a strong concentration in dairy products, especially cheese and ice cream.

We will call this matrix U. The use of chocolate in makings cheese and rennet in making ice cream
alerts us to the fact that the columns are industries, not products. (Rennet is a substance used to make
milk curdle. It is commonly used in making cheese but never in ice cream.)

8 The United Nations Handbook of Input-Output Table Compilation and Analysis, 1999 (pp. 98-103) goes into this
question in further detail, and also comes out strongly in favor of using the product technology to develop product by
product tables. SNA 2008 however, glosses over the topic, and falls back into the stance of arguing that since the
product technology assumption will produce negatives, that it is implausible (28.56, p. 515).

110

Table 19.2.1. The Use Matrix

The Make matrix, shown in Table 19.2.2 below, confirms that cheese is being made in the ice cream
industry and ice cream in the cheese industry.

Table 19.2.2. The Make Matrix

This matrix shows that of the total output of 100 of cheese, 70 was made in the Cheese industry and
30 in the Ice cream industry, while of the total ice cream output of 200, 180 was in the Ice cream
industry and 20 in the Cheese industry. It also shows that, of the total output of 90 by the cheese
industry, 78 percent (70/90 = .77778) was cheese and 12 percent ice cream. We will need the
matrix, M, derived from the Make matrix by dividing each cell by the column total. For our
example, the M matrix is shown in Table 19.2.3.

Table 19.2.3. The M Matrix

Now let us suppose that, in fact, cheese is made by the same recipe wherever it is made and ice
cream likewise. That is, we will make the "product-technology assumption." If it is true and the

111

USE Industries
Products Cheese Ice cream Chocolate Rennet Other
Cheese 0 0 0 0 0
Ice cream 0 0 0 0 0
Chocolate 4 36 0 0 0
Rennet 14 6 0 0 0
Other 28 72 30 5 0

MAKE Products
Industries Cheese Ice cream Chocolate Rennet Other
Cheese 70 20 0 0 0
Ice cream 30 180 0 0 0
Chocolate 0 0 100 0 0
Rennet 0 0 0 20 0
Other 0 0 0 0 535
Total 100 200 100 20 535

M Products
Industries Cheese Ice cream Chocolate Rennet Other
Cheese 0.7 0.1 0.0 0.0 0.0
Ice cream 0.3 0.9 0.0 0.0 0.0
Chocolate 0.0 0.0 1.0 0.0 0.0
Rennet 0.0 0.0 0.0 1.0 0.0
Other 0.0 0.0 0.0 0.0 1.0

matrices made well, then there exists a "recipe" matrix, R, in which the first column shows the inputs
into cheese regardless of where it is made, the second column shows the inputs into ice cream
regardless of where it is made, and so on. Now the first column of U, U1, must be .70*R1 +
0.10*R2 ,where R1 and R2 are the first and second columns of R, respectively. Why? Because the
Cheese plants make 70 percent of the cheese and ten percent of the ice cream. In general,

U=RM ' (19.2.1)

Where M ' is the transpose of M. It is then a simple matter to compute R as

R=U (M ')−1 (19.2.2)

For our example, (M ')−1 is given in table 19.2.4.

Table 19.2.4 M' Inverse

and R works out to be

Table 19.2.5 The R or “Recipe” Matrix

This R is very neat. All the rennet goes into cheese and all the chocolate goes into ice cream.
Unfortunately, as indicated by the quotation from the SNA, it is rare for the results to turn out so
nicely.

Indeed, just a slight change in the U matrix will show us what generally happens. Suppose that the
U matrix had been just slightly different, with 1 unit less of chocolate going into cheese as shown
below and one less unit of rennet used in ice cream.

112

Cheese Ice cream Chocolate Rennet Other
Cheese 1.5 -0.5 0.0 0.0 0.0
Ice cream -0.2 1.2 0.0 0.0 0.0
Chocolate 0.0 0.0 1.0 0.0 0.0
Rennet 0.0 0.0 0.0 1.0 0.0
Other 0.0 0.0 0.0 0.0 1.0

R Cheese Ice cream Chocolate Rennet Other
Cheese 0 0 0 0 0
Ice cream 0 0 0 0 0
Chocolate 0 40 0 0 0
Rennet 20 0 0 0 0
Other 30 70 30 5 0

Table 19.2.6 An Alternative Use Matrix

Table 19.2.7 shows what the R matrix would have been:

Table 19.2.7 An Impossible R Matrix

Here we find the infamous small negative flows. It is not hard to see how they arise. While it is
conceivable that the Cheese industry does not produce chocolate ice cream, it is also very easy for
the table makers to forget to put into the Cheese industry the chocolate necessary for the ice cream it
produces, or to put in too little. Wherever that happens, negatives will show up in the R matrix.

The negatives have driven at least some statistical offices to the industry-technology assumption.
The so-called commodity-to-commodity matrix, C, derived from this assumption is

C=UN ' (19.2.3)

where N is the matrix derived from the Make matrix by dividing each row by the row total. For
example, the Cheese column of C is C1 = .77778U1 + 0.14285U2 because 77.778 percent of the
product of the first industry is cheese and 14.285 percent of the product of the second industry is
cheese. The result of applying this assumption to our example is Table 19.2.8.

Table 19.2.8 The Mess Made by the Industry Technology Assumption

113

Alternative USE Industries
Products Cheese Ice cream Chocolate Rennet Other
Cheese 0 0 0 0 0
Ice cream 0 0 0 0 0
Chocolate 3 37 0 0 0
Rennet 15 5 0 0 0
Other 28 72 30 5 0

Impossible R Cheese Ice cream Chocolate Rennet Other
Cheese 0.0 0.0 0.0 0.0 0.0
Ice cream 0.0 0.0 0.0 0.0 0.0
Chocolate -1.7 41.7 0.0 0.0 0.0
Rennet 21.7 -1.7 0.0 0.0 0.0
Other 30.0 70.0 30.0 5.0 0.0

 Industries
Products Cheese Ice cream Chocolate Rennet Other
Cheese 0 0 0 0 0
Ice cream 0 0 0 0 0
Chocolate 8.254 31.746 0 0 0
Rennet 11.746 8.254 0 0 0
Other 32.063 67.936 30 5 0

C Industry
Technology

This "solution" has made matters worse. The original U matrix had 4 units of chocolate going into
the Cheese industry, which admittedly made some ice cream. Now this industry-technology
product-to-product matrix asserts that 8.25 units of chocolate went into producing pure cheese! Not
into the Cheese industry but into the product cheese! And 8.25 units of rennet went into producing
curdled ice cream! To call the result a product-to-product table would be little short of scandalous.

Fortunately, we do not have to choose between this sort of massive nonsense and negative flows. It
is perfectly easy to rely mainly on the product-technology assumption, yet avoid the negatives, as we
will now show.

19.3. The No-Negatives Product-Technology Algorithm

We wrote the basic equation relating U, M, and R as equation (19.2.1) above. It will prove
convenient to rewrite equation (19.2.1) as

U ' =MR' (19.3.1)

Using U i ' to denote the ith column of U' and Ri ' to denote the ith column of R, we can write
U i ' =MR i ' (19.3.2)

Notice that this is an equation for the distribution of product i in row i of the Use matrix as a
function of M and distribution of the same product in row i of the R matrix. We can simplify the
notation by writing

u=U i ' and r=Ri ' (19.3.3)

Then equation (19.3.2) becomes
u=Mr (19.3.4)

or

0=−Mr+u (19.3.5)

And adding r to both sides gives

r=(I−M)r+u (19.3.6)

Apart from the unusual case in which less than half of the production of a product is in its primary
industry, the column sums of the absolute values of the elements of (I - M) are less than 1, and the
convergence of the Seidel iterative process for solving this equation is guaranteed a by well-known
theorem. (If the share of the total production of a particular product coming from the industry to
which it is primary is x, then the absolute value of the diagonal of (I - M) for that product is |1 – x |
and the sum of all the absolute values of off-diagonal elements in the column is |1 - x |, so the total
for the column is 2*| 1 - x |, which is less than 1 if x > .5.)

We start this process with

r(0)
=u (19.3.7)

and then define successive approximations by

114

r(k+1)
=(I −M)r(k)

+u (19.3.8)

To see the economic interpretation of this equation, let us write out the equation for the use of a
product, say chocolate, in producing product j, say cheese:

r(k+1)=u j− ∑
h=1 ; h≠ j

n

m jh r h
(k)+(1−m jj)r j

(k) (19.3.9)

The first term on the right tells us to begin with the chocolate purchases by the establishments in the
cheese industry. The second term directs us to remove the amounts of chocolate needed for making
the secondary products of those establishments by using our present estimate of the technology used
for making those products, r(k). Finally, the last term causes us to add back the chocolate used in
making cheese in other industries. The amount of chocolate added by the third term is exactly equal
to the amount stolen, via second terms, from other industries on account of their production of
product j:

(1−m jj)r j
(k)= ∑

h=1 ;h≠ j

n

mhj r j
(k) (19.3.10)

because

∑
h=1

n

mhj=1 (19.3.11)

It is now clear how to keep the negative elements out of r. When the "removal" term, the second on
the right of (19.3.9), is larger than the entry in the Use matrix from which it is being removed, we
just scale down all components of the removal term to leave a zero balance. Then instead of adding
back the "total-stolen-from-other-industries" term, (1−m jj)r j , all at once, we add it back bit-by-
bit as it is captured. If a plundered industry, say Cheese, runs out of chocolate with only half of the
total chocolate claims on it satisfied, we simply add only half of each plundering product's claim into
that product's chocolate cell in the R matrix. We will call the situation where the plundered industry
runs out of the product being removed before all claims are satisfied a "stop".

To express this process in equations, we introduce scale factors, s j
(k) , defined by

s j
(k)

=1 if u j≥ ∑
h=1 ; j≠ j

n

mhj r j
(k) (19.3.12)

and

s j
(k)

=
u j

∑
h=1 ; h≠ j

n

mhj r j
(k) otherwise (19.3.13)

Equation (19.3.9), which expresses the Seidel process without the no-negatives condition, is then
replaced by

r(k+1)=u j−s j
(k) ∑

h=1 ; h≠ j

n

m jh r h
(k)+ ∑

h=1 ;h≠ j

n

sh
(k)mhj r j

(k) (19.3.14)

115

By the choice of the scale factors, s, we are sure that r j
(k+1) is not negative. By summing both

sides of (19.3.14) over j, it is easy to see that

∑
j=1

n

r j
(k+1)=∑

j=1

n

u j (19.3.15)

That is to say, the row sum is unchanged by the iterative process. In the computer program, it should
be pointed out, there is no need for a vector, s, of scale factors. Instead, a vector combining the
second and third terms is built up as each scale factor is calculated. In this way, the multiplications
do not have to be done twice.

The process can also be applied to the rows of the value added part of the matrix. It is not certain,
however, that the column sums of the resulting value-added table will match the value added as
calculated from product output minus intermediate input. An option on the program provides for the
automatic RAS balancing at the end of the no-negatives algorithm to ensure that the resulting matrix
has matching row and column totals.

19.4. When Is It Appropriate to Use This Algorithm?

This algorithm is appropriate where the product-technology assumption itself is at least
approximately true. Essentially, it allows there to have been slightly different technologies in
industries where assuming strictly the average product technology would produce negatives. It is
appropriate where the negatives arise because of inexactness in making the tables or because of
slight differences in technologies in different industries. Applied to the Use matrix of either Table 1
or Table 6, this method gives the "neat" Recipe matrix of Table 5 with no rennet in ice cream and no
chocolate in cheese. It never produces negative entries nor positive entries where Use has a zero.
The row totals are unaffected by the process. It is, moreover, equivalent to deriving Recipe from
equation (19.2.1) if no negatives would arise, so that if the product-technology assumption is strictly
consistent with the Use and Make tables, the method produces the true matrix. It may even produce
a correct Recipe matrix from a faulty Use matrix — as it has perhaps done in our example — so that
equation (19.2.1) could be used to revise the estimate of the Use matrix.

Certain accounting practices, however, may produce situations which appear to be incompatible with
the product-technology assumption, even though the underlying reality is quite compatible. For
example, local electric utilities generally buy electricity and distribute it. In the U.S. tables, they are
shown as buying electricity (not coal), adding a few intermediate inputs and labor, and producing
only a secondary product, electricity, which is transferred, via the Make matrix, back to electricity.
Looked at mechanically, this method of making electricity is radically different from that used in the
Electricity industry, which uses coal, oil, and gas to make electricity, not electricity itself. If our
algorithm is applied thoughtlessly to this situation, it cannot be expected to give very sensible
results.

Fortunately, it is easy to generate signs of this sort of problem. One can compute the “NewUse”
matrix implied by equation (19.2.1) with the Recipe matrix found by the algorithm and the given
Make matrix. This "NewUse" matrix can then be compared with the original Use matrix and the
causes of the differences investigated. We will follow this procedure in section 19.6 on the
experience of using the method on the 1992 tables for the USA.

116

To fix the problem in the above example about electricity, we have only to consider the output of the
State and local utilities as production of their own primary product, which is then sold, via the Use
matrix — not transferred via the Make matrix — to the Electricity industry. In essence, we use the
industry technology assumption for the local electric utilities — and for all other industries where all
of the output is secondary. The industry technology assumption may also be preferable for transfers
to some catch-all sectors such as "Miscellaneous food preparations" (SIC2099), which includes such
disparate products as vinegar, yeast, Chinese noodles, and peanut butter. It is probably just as
reasonable to suppose that a product transferred into this industry is made with the average
technology of the industry where it is made as with the average technology of this catchall sector.
Indeed, this sort of industry can produce the reverse of the negatives problem. For example, because
of the importance of peanut butter in this industry, it has significant inputs of oil seeds. Now the no-
negatives algorithm will not pull oil seeds out of the "Macaroni, spaghetti, vermicelli, and noodles"
industry, (SIC2098), (which used no oil seeds) just because it transferred some Chinese noodles to
2099. But neither will it take out an adequate amount of flour for those noodles, because flour is
quite unimportant in the 2099 input mix. This problem shows up only indirectly by substantial oil-
seed inputs to many food industries in the NewUse matrix which transferred products to 2099 but, in
fact, used no oil seeds. That is a signal to switch to the industry technology for these transfers by
converting them to sales in the Use matrix.

Thus, in the use of this method, a number of iterations may be necessary. Changes in concepts, in
treatments of some transactions, and occasionally in underlying data may be necessary. Although
the calculation of the non-negative Recipe matrix is totally automatic, it may be necessary to make
several runs to get acceptable results.

In this process, it must be recognized that a nice, clean accounting system may not be operational,
that is, it may not provide by itself a simple, automatic way to go from final demand vectors
specified by products to total outputs of those products. We may have to change slightly some of the
concepts in the accounting system to make it operational. In making the change required for the
Electricity example, we have messed up the neat accounting concept of the Electricity column of the
Use matrix as a picture of what came into a particular group of establishments. We have, however,
taken a step toward creating what might be called an operational Use matrix. I do not say, therefore,
that statistical offices should not produce pure accounting Use matrices. But I do feel that they
should also prepare the operational use matrix and the final product-to-product matrix, for in the
process, they will learn about and deal with the problems which the users of the matrix will certainly
encounter. They may even discover and correct errors in their work before they are discovered by
their users.

This process is totally inappropriate for handling by-products such as hides produced in the meat
packing industry or metal scrap produced in machinery industries. Their treatment is a different
subject.

19.5. A Brief History of the Negatives Problem

The idea to compute R from equation (19.2.1) seems to have been first put in print by Van
Rijckeghem (1967). He realized that there could be negatives but did not think they would be a
serious problem. The idea of using equation (19.2.1) in this way, however, must have been in the air,
for by early 1967, I had used it, without thinking that it was original, found negatives, and started

117

work on the algorithm presented here.

The problem was encountered by ten Raa, Chakraborty and Small [1984] in the course of work
which was primarily concerned with identifying by statistical means true by-products. They note the
existence of the method presented here but write:

[Almon] iterates truncated Neumann series in which matrix multiplications are carried out only
to a limited extent to avoid negatives. This arithmetic manipulation goes without justification, is
arbitrary and depends on the choice of [make matrix]-decomposition as well as the iteration
scheme.

I do not believe that any of this comment is correct. The Neumann series is the expansion
(I −A)

(−1)
=I +A+A2

+A3
+... . The algorithm used here makes no use of this series; rather it

uses the Seidel procedure. There are no matrix multiplications, nor is there is any equivalence
between a “limited” number of terms in the Neuman series and the Seidel solution. The procedure
is carried to convergence. We have seen that the procedure has a perfectly reasonable economic
interpretation; indeed, it arose from the economic interpretation of the Seidel procedure. The only
thing perhaps "arbitrary" is that 0 is considered a reasonable input flow while negatives are
considered unreasonable. I do not know what the "[make matrix]-decomposition" refers to, but I can
assure the reader that the solution does not depend on the "iteration scheme." While I could not see
how it could, given that it is carried to convergence, I changed the program and ran the "robberies"
in the opposite order. The answers were identical.

The ingenious attempt of ten Raa [1988] to modify elements of the matrices in such a way as to find
a most probable U matrix consistent with a non-negative R should be mentioned even though it
ended, in the author’s view, in frustration.

Rainer and Richter [1992] have documented a number of steps which they took towards making
what I have called here the operational Use and Make matrices. Such steps should certainly be
considered and applied if need. These authors still ended up with hundreds of negative flows in the
R matrix because they were using just equation (1). At that point, the process described here could
have been applied.

Steenge and Konijin [1992] point out that if the R matrix computed from equation (19.2.1) has any
negatives in it, then it is possible to change the levels of output of the various industries in such a
way that more of all products is produced without using more of all inputs. They feel that it is
implausible that such a rearrangement is possible and observe that perhaps the negatives "should not
be regarded as rejecting the commodity technology assumption, but as indicators of flaws in the
make and use tables." (p. 130). I feel that there is much merit in that comment. It seems to me that
the right time and place to use the algorithm presented here is in the process of making the tables. If
there are not good statistical grounds for preferring the original Use matrix, the recomputed NewUse
might well be argued – following the reasoning of Steenge and Konijn – to be a better estimate.

The caveat here is that there may well be cases where it really would be possible to increase the
outputs of all products while using less of some product. For example, if there are shoes made in the
Plastics products industry without any use of leather, while the Footwear industry uses leather, then
by moving shoe production from Footwear to Plastic products it may be possible to produce more of
all products while using less leather. Where such cases arise, a different solution is necessary, for
example, moving the shoes made in the Plastics products industry together with their inputs into the

118

Footwear industry or insisting that the two kinds of shoes are separate if substitutible products.

19.6. Application to the U.S.A Tables for 1992

The method described here has been applied to all of the USA tables since 1958 with experiences
broadly similar to those described here for the 1992 table. This table has 534 sectors, counting some
construction sectors which have no intermediate sales. Of these 534, 425 have secondary
production. Of the 283,156 possible cells in a 534 X 534 matrix, the Use matrix has 44,900 non-
zero cells, and the Make matrix has 5,885. The matrix was produced in two versions. In one, certain
activities, such as restaurant services of hotels, were removed from the industry where they were
produced (Hotels) and put into the sector where these activities were primary (Restaurants). In the
other, these activities were left in the industry where they were conducted. The first version was
designed to make the product-technology assumption more valid, and it has been used here. The
matrix also puts true by-products (such as hides from meat packing) in a separate row, not one of the
534 considered here.

To try to convey a feeling of what it is like to work with the algorithm, we will look at the process
midway along, rather than at the very beginning or the somewhat polished end. That is, some
adjustments in the Use and Make matrix from which the algorithm starts will have already been
made. As a result of this application, further adjustments will be suggested before the next
application.

Before this application of the algorithm, the output of industries which had only secondary
production had been changed, for reasons explained above, to be primary and the flows moved from
the Make to the Use matrix.

In the following rather detailed descriptions, necessary to give a picture of what the process is really
like, I will, to avoid confusion, capitalize the first letter of the first word in industry names but not in
product names.

The industry Water and sewer systems failed to satisfy the requirement that at least half of the output
of a product should be in the industry where it is primary. Indeed, some 85 percent of this product’s
output comes from Other state and local enterprises, and the iterative procedure failed to converge
for a few rows until this secondary transfer was converted into a primary sale. Production of
secondary advertising services, which occurred in many sectors, was also converted to a primary
product of the producing industry and "sold" via the Use matrix to the Advertising industry.
Secondary production of recreational services in agricultural industries was similarly converted.
Much of the output of the several knitting industries had been treated originally as secondary
production, and these had been changed to primary sales before the calculations shown here.
Finally, the diagonals of many columns of the Use matrix are large, in part because intra-firm
services, such as those of the central offices, often appear there. Thus the same sort of service that is
on the diagonal of industry i is also on the diagonal of industry j. In this case, the product-
technology assumption does not apply, not because it is untrue, but because of the way the table was
made. Until we are able to obtain tables without this problem, we have just removed half of the
diagonals from the Use table before calculating Recipe, and have then put back this amount in both
of these matrices and in the NewUse matrix.

The data in both Use and Make tables were given to the nearest 1 million dollars, and all dollar

119

figures cited here are in millions. The convergence test in the iterative process was set at one tenth
of that amount, .1 million dollars. The iterative process converged for most rows of the R matrix in
less than five iterations. The most iterations required for any row was 15.

The resulting Recipe matrix looks very similar in most cells to the original Use table. The Recipe
matrix contains, of course, only non-negative entries and can have strictly positive entries only
where U has positive entries. It may, however, as a result of the "robbing" process, have a zero
where U has a positive entry. In all, there were only 95 cells in which Recipe had a zero where Use
had a positive entry.

Although it is the Recipe matrix that we need from this process, it is also interesting, as noted above,
to compare the original Use matrix with what we may call NewUse, computed by the equation
(19.2.1) by NewUse = Recipe*Make’. The difference between Use and NewUse shows the changes
in the Use matrix necessary to make it strictly compatible with product-technology assumption, the
given Make matrix, and the calculated Recipe matrix. If there was no "stop" in a row, the two
matrices will be identical in that row. There were 118 such identical rows, 109 of them having no
secondary output.

In the other rows, these differences turn out to be mostly small but very numerous. The first and
most striking difference is that NewUse has almost twice as many non-zero cells as does Use.
Nearly all of these extra non-zeros are very small, exactly the sort of thing to be reasonably ignored
in the process of making a table. But it is precisely this "reasonable ignoring" that leads to the
problem of many small negatives in the product-to-product tables calculated without the no-
negatives algorithm.

To get a closer look at how Use and NewUse compare, we may first divide each column by the
corresponding industry output and then look at the column sums of the absolute values of the
differences of individual coefficients in the column. This comparison is shown in Table 19.6.1.
Clearly the vast majority of industries show only small differences compatible with “reasonable
ignoring” of small flows in the Use matrix. They, therefore, cast no serious doubt on the product-
technology assumption or the usability of the Recipe matrix obtained by the no-negatives algorithm.
If what we are interested in is the R matrix, we can ignore the small differences between Use and
NewUse.

Table 19.6.1 Comparison of Use and NewUse

There are, however, a few cases that should be looked at more closely. Table 19.6.2 shows a list of
all of industries which had a sum of absolute differences greater than .050. We will look at the top
five.

120

Count
.050 - .250 17
.030 - .050 24
.020 - .030 54
.010 - .020 117
.000 - .010 312

Sum of Absolute
Differences

Table 19.6.2 Largest Differences Between Use and NewUse

There are, however, a few cases that should be looked at more closely. Table 19.6.2 shows a list of
all of industries which had a sum of absolute differences greater than .050. We will look at the top
five.

For Asbestos products, the cause of the difference is quickly found. The fundamental raw material
for these products comes from industry 31 Misc. non-metallic minerals. Over forty percent of the
output of Asbestos products, however, is produced in industry 400 Motor vehicle parts and
accessories, but this industry buys neither miscellaneous non-metallic minerals nor asbestos
products. In other words, it seems to be making almost half of the asbestos products without any
visible source of asbestos. This anomaly seems to me to be an oversight in making the Use matrix
which should be simply corrected. If our only interest is the Recipe matrix, the algorithm seems to
have computed pretty nearly the right result from the wrong data. On the other hand, if we want to
correct the Use table, NewUse, gets us started with the right entry for Misc. non-metallic minerals
into both Motor vehicle parts and Asbestos products. To keep the right totals in these two columns
of Use will require manual adjustments.

The second largest difference between Use and NewUse shown in Table 19.6.2 is in the input of
meat animals into Sausage. The Sausage industry is shown in the Use matrix to buy both animals
($655) and slaughtered meat ($9688). It had a primary output of $13458 and a secondary output of
$2612 of products primary to Meat packing. Meat packing had a secondary output of $4349 of
sausage. Now in Meat packing, the cost of the animals is over eighty percent of the value of the
finished product, so the purchases of animals in the Sausage industry is insufficient to cover even
the secondary meat output of this industry, not to mention making any sausage. In making Recipe,
the input of animals directly into sausage is driven to zero and cut off there rather than being allowed
to become negative. Then when NewUse is made, the direct animal input for all the secondary
production of meat packing products is put in, thus making a flow some six times as large as the
purchase of meat animals by the Sausage industry in the original Use matrix.

What I believe to be really happening here is that Sausage plants are mostly buying halves of
slaughtered animals from meat packers, selling off the best cuts as a secondary product, and using

121

Sum Column Column Largest single difference
|dif| Number Name Row |dif| Row Name

0.250 272 Asbestos products 31 0.023 Misc. nonmetallic minerals
0.232 88 Sausages 3 0.151 Meat animals
0.167 125 Vegetable oil mills, nec 15 0.074 Oil bearing crops incl s
0.118 493 Auto rental & leasing 232 0.025 Petroleum refining
0.088 128 Edible fats and oils, nec 15 0.043 Oil bearing crops incl s
0.088 126 Animal & marine fats 126 0.038 Animal & marine fats &
0.086 87 Meat packing plants 3 0.057 Meat animals
0.079 285 Primary metals, nec 22 0.006 Iron & ferroalloy ore m
0.079 225 Manmade organic fibers 212 0.036 Indl chem: inorg & org
0.074 450 Transportation services 232 0.019 Petroleum refining
0.068 123 Cottonseed oil mills 5 0.048 Cotton
0.065 357 Carburetors, pistons, 391 0.011 Electronic components
0.060 99 Pickles, sauces 1 0.011 Dairy farm products
0.060 95 Canned & cured sea food 19 0.039 Commercial fishing
0.059 139 Yarn mills & textile fini 212 0.035 Indl chem: inorg & org
0.055 459 Sanitary services, steam 413 0.018 Mechanical measuring devices
0.051 248 Leather gloves 244 0.012 Leather tanning

the rest to make sausage. Over in the Meat packing plants, the same thing is happening.
Fundamentally, there is only one process of sausage making. The question is how to represent it in
the input-output framework. The simplest representation of it in the Use matrix would be to have
packing houses sell to sausage plants only the meat that would be directly used in sausage. The rest,
the choice cuts sold off as meat by Sausage mills, would simply be considered sold by the packers
without ever passing through the Sausage mills. The industry output of Sausage mills is reduced but
cost of materials (namely, meat) is reduced by exactly the same amount, so there is no need to adjust
other flows. Product output of meat is reduced, but not the industry output. Thus, a slight
adjustment in the accounting makes it broadly compatible with the product-technology assumption.
The seventh item in Table 19.6.2, by the way, is just the other side of this problem.

The third largest of the discrepancies lies in row 16, oil-bearing crops, of industry 125 Vegetable oil
mills n.e.c (not elsewhere classified). The differences in the underlying flows is not large, $298 in
Use and $251 in NewUse, but it turns up in Table 19.6.2 because the cost of these oil crops is such a
large fraction of the output of the Vegetable oil mills. A comparison of the oil-bearing crops row of
Use and NewUse shows that NewUse has a number of small positive entries for industries where, as
for Cheese, Use has a zero and where, moreover, it is highly implausible that there was any use of oil
seeds. On the other hand, most of the large users of oil seeds, like Vegetable oil mills have had their
usage trimmed back. The key to what is going on is found in industry 132 Food preparations n.e.c..
In Use, this industry bought $558 from oil bearing crops, nearly twice the consumption of the
vegetable oil mills themselves. Peanut butter, as noted above, is in this catchall industry. That fact,
by itself, is not a problem. The problem is that about a quarter of the production of products primary
to this industry are made in other industries. In fact, most of the food manufacturing industries have
some secondary production of the miscellaneous food preparations. Probably "preparations" made
in the Cheese industry are quite different from those made in the Pickles industry. And it certainly
makes no sense to spread oil seed inputs all over the food industries. Here we have a clear case of
the inapplicability of the product-technology assumption if all these secondary products are
considered to be truly the same product. On the other hand, as argued above, the very heterogeneity
of the products makes it appropriate to consider each as a primary product of the industry which
produces it and then "sell" it, via the Use matrix, to Food preparations for distribution. In the next
pass at making Recipe, this change is to be made.

The vegetable oil industries also present another interesting case of apparent but perhaps not real
violation of the product-technology assumption, which shows up in the fifth item in Table 19.6.2.
Industry 125 Vegetable oil mills n.e.c. has inputs of oil-bearing crops, cotton, and tree nuts totaling
$437. It uses these oil sources to produce a primary output of $572. Industry 128 “Edible fats and
oils” produces $92 of products primary to 125 without a penny of any of these inputs! Surely this is
flat violation of the product-technology assumption. But is it really? "Edible fats and oils" buys lots
of the products primary to Vegetable oil mills. Thus, it is entirely possible to have two bottles of
chemically identical oil made of identical raw materials by identical refining processes but with one
bottle made entirely in Vegetable oil mills while the oil in the other bottle was pressed in those mills
and then sold to Edible fats and oils for finishing. We might call this situation “trans-market product
technology.” Our algorithm gave the right answer for the Vegetable oil mills column of Recipe, that
is, it combined output of products primary to the oil mills with the inputs of oil sources which this
industry had.

The fourth largest discrepancy in Table 19.6.2 is for the gasoline input into Automobile renting and

122

leasing. Use shows $1131; Recipe ups that to $1197.2; but NewUse cuts it back to $565.5. What
happened? The problem is that slightly more than half of the output Auto renting is produced in
Credit agencies, with a minuscule input of gasoline. When NewUse is made, more than half of the
gasoline in Recipe is allocated over to Credit agencies. Here we are confronted with a failure of the
product-technology assumption not because of different processes for producing the same product
but because two quite different products have been called one and the same in the accounting
system. The output of the Credit agencies, long-term leasing, is quite distinct from the short-term
renting, which is were the gasoline was used. The best solution would be to recognize the difference
of the two products. Short of that, the worst of the problem can be fixed by turning the secondary
transfer from Credit agencies to Automobile rental into a primary flow. The present Recipe matrix,
incidentally, is about right in the gasoline row but makes no connection between a final demand for
automobile renting and leasing and the output of credit agencies.

From these five or six cases, we see that our algorithm cannot be expected to give usable results on
the first try. The problems are likely to lie, however, neither in the fundamental economic reality nor
in the algorithm, but in an accounting system which needs a few modifications in Use and Make to
make it operational in our sense. Most importantly, the algorithm gives us the means to identify the
places that need attention and a way of progressing systematically through the problems. It also
provides a way of producing a final, non-negative Recipe matrix that implies a NewUse matrix close
enough to the modified Use matrix that the differences can be safely ignored.

Making an input-output table requires fussing over details, and making a good Recipe matrix with
the algorithm presented here is no different in this respect from any other part of the process. Use of
the algorithm reveals and pinpoints problems. Moreover, the important problems are likely to be
small in number. We have covered all of those causing a difference of as much as .100 between
columns of Use and NewUse. To get to a Recipe table we would be ready to accept might require
another week’s work. But in the total effort which went into making this table, that is minuscule.
Most importantly, the use of the algorithm gives us a way to work on the problems rather than just
wring our hands over negatives.

In this sense, this algorithm has performed satisfactorily over many years on every U.S. table since
1958. The use of the method seems to me to deserve to become a standard part of making input-
output tables and, in particular, for making product-to-product tables.

19.7. The Computer Program

The C++ code for this algorithm, using functions from BUMP, the Beginner’s Understandable
Matrix Package, for handling matrices and vectors, is given below. It is reproduced here because the
code shows more clearly than the verbal or formulaic description exactly what is done. The program
and the supporting BUMP code made be downloaded from the Inforum Internet site:
www.inforum.umd.edu. The main program here reads in the matrices that were used in the
examples. The main program for the actual calculations of the full-scale American matrices is
significantly larger and has various diagnostic output, such as that shown in Table 19.6.2. It is
available on request.

In using the algorithm, it is important for documenting what has been done to have a method of input
of the original Use and Matrix matrices that preserves the original version at the top of the input file
and introduces the modifications as over-rides later in the file. It is also important to have software,

123

such as ViewMat, which will show corresponding columns of several large matrices side-by-side in a
scrolling grid. ViewMat is also available on the Inforum Internet site.

#include <stdio.h> // for printf();
#include <math.h> // for abs()
#include "bump.h"
int purify(Matrix& R, Matrix& U, Matrix& M, float toler);

void main(){
Matrix Use(5,5), Make(5,5), R(5,5), NewUse(5,5);
Use.ReadA("Use.dat");
Make.ReadA("Make.dat");
purify(R,Use,Make,.000001);
R.Display("This is R");
writemat(R,”Recipe”);
NewUse = R*(~NewUse);
writemat(NewUse,”NewUse”);
tap();
printf("\nEnd of calculations.\n");
}

/* Purification produces a product-to-product (or Recipe) matrix R from a Use matrix U and a Make
matrix M. M(i,j) shows the fraction of product j made in industry i. U(i,j) shows the amount of
product i used in industry j. The product-technology assumption leads us to expect that there
exits a matrix R such that U = RM'. If, however, we compute R = U*Inv(M') we often find many
small negative elements in R. This routine avoids those small negatives in an iterative process.

*/

int purify(Matrix& R, Matrix& U, Matrix& M, float toler){
int row, i, j, m, n, iter, imax;
const maxiter = 20;
float sum,rob,scale,dismax,dis;
n = U.rows(); // n = number of rows in U
m = U.columns(); // m = number of columns in U
Vector C(m), P(m), Flow(m), Discrep(m);
// Flow is row of U matrix and remains unchanged.
// P becomes the row of the purified matrix.
// C is the change vector at each iteration.
// At the end of each iteration we set P = Flow + C, to start // the next iteration.

// Purify one row at a time
for(row = 1; row <= n; row++){

C.set(0.); // C, which will receive the changes, is
// initialized to zero.
// P = Flow + C will be the new P.
pulloutrow(Flow,U,row);
P = Flow;
iter = 0;
start: iter++;
for(j = 1; j<=m; j++){

// Calculate total claims from other industries on
// the inputs into industry j.
sum = 0;
for(i = 1; i <= m; i++){

if(i == j) continue;
rob = P[i]*M(j,i);
sum += rob;
C[i] += rob;
}

// Did we steal more from j than j had?
if (sum > Flow[j] && sum > 0){

// scale down robbery
scale = 1. - Flow[j]/sum;
for(i = 1; i <= m; i++){

if(i == j) continue;
C[i] -= scale*P[i]*M(j,i);

124

}
sum = Flow[j];
}

C[j] -= sum;
}

// Check for convergence
imax = 0;
dismax = 0;
for(i = 1; i <= m; i++){

dis = fabs(P[i] - Flow[i] - C[i]);
Discrep[i] = dis;
if(dis >= dismax){
imax = i;
dismax = dis;
}

}
P = Flow + C;
C.set(0);
if(dismax > toler){

if(iter < maxiter) goto start;
printf("Purify did not converge for row %d. Dismax = %7.2f. Imax = %d.\n",

row,dismax,imax);
}

putinrow(P,R,row);
}

return(OK);
}

125

References

Almon, C. (1970) “Investment in input-output models and the treatment of secondary products,”
Input-Output Techniques, vol. 2, Applications of Input-Output Analysis, pp.103-116
(Amsterdam, North Holland Publishing Co.)

Almon, C., Buckler, M., Horwitz, L., and Reimbold, T.,(1974) 1985, Interindustry Forecasts of the
American Economy (Lexington, Lexington Books) pp.151-154.

European system of accounts: ESA 1995, Transmission programme of data. Eurostat.

Rainer, N. and Richter, J. (1992) “Some Aspects of the Analytical Use of Descriptive Make and
Absorption Tables,” Economic Systems Research, 4(2), pp.159 - 172

Steenge, A.E. and Konijin, P.J.A. (1992) “A new Approach to Irreducibility in Multisectoral Models
with Joint Production,” Economic Systems Research, 4(2), pp 125-132

The System of National Accounts 1993 (published by the United Nations, the World Bank, the IMF,
the OECD, and the European Union)

ten Raa, Thijs, D. Chakraborty, and J.A. Small (1984) “An Alternative Treatment of Secondary
Products in Input-Output Analysis,” Review of Economics and Statistics, 66, pp. 88-97.

ten Raa, Thijs (1988) “An Alternative Treatment of Secondary Products in Input-Output Analysis:
Frustration,” Review of Economics and Statistics, pp. 535-538.

Van Rijckeghem (1967) “An Exact Method for Determining the Technology Matrix in a Situation
with Secondary Products,” Review of Economics and Statistics, 49, pp. 607-608.

126

CHAPTER 20. A PERHAPS ADEQUATE DEMAND SYSTEM

Long-term, multisectoral modeling requires calculation of consumer expenditures in some detail by
product. Finding a functional form to represent the market demand functions of consumers for this
work has proven a surprisingly thorny problem. Clearly, the form must deal with significant growth
in real income, the effects of demographic and other trends, and changes in relative prices. Both
complementarity and substitution should be possible among the different goods. Increasing income
should certainly not necessarily, by the form of the function, force the demand for some good to go
negative. Prices should affect the marginal propensity to consume with respect to income, and the
extent of that influence should be an empirical question, not one decided by the form of the function.

This chapter will present a form which meets these requirements and extends a form I suggested
many years ago (Almon [1979]). Applications of the form to forty-product demand systems for
France, Italy, Spain and the United States are reported and the results compared.

Before presenting this form, however, it may be well to see just how tricky it can be to find a form
with these simple requirements by looking at another form, the “Almost Ideal Demand System”
(AIDS) suggested by Deaton and Muellbauer [1980]. Its name, the eminence of its authors and its
place of publication have led to wide usage. It has, however, a most peculiar property which is
likely to utterly vitiate any growth model in which it is used. Like many others, it is derived from
utility maximization; its problems will therefore emphasize the important fact that such derivation
does not automatically imply reasonable properties. One of the properties it does imply, however, is
Slutsky symmetry in the market demand functions. This property was not mentioned above. Should
it have been? What role should this symmetry play in market demand functions? His questions also
needs to be examined before presenting the new form, for it plays a key role its formulation.

20.1. Problems and Lessons of the AIDS Form

The AIDS form can be written as an equation for the budget share of good i:

si=a i+∑
j=1

n

d ij log(p j)+bi log(y / P) (20.1.1)

where si is the budget share of product i, p j is the price of product j, y is nominal income and
P is an overall price index, the matrix of d's is symmetric and has zero row and column sums, the
sum of all the a i is one, and the bi sum to zero. Consequently, if any bi is positive, then one
or more others must be negative. Thus increasing real income must ultimately drive the
consumption of one or more goods negative, unless, of course, it has no effect at all on budget
shares. This property seems rather less than “ideal”. Moreover, the partial derivative of the share
with respect to real income is independent of the relative prices, whereas common sense suggests
that it should depend on them. Because of these properties, the AIDS form, while possible “almost
ideal” from some point of view, is surely absolutely inadequate for use in any growth model. Since
it is derived from utility maximization, it also serves as a clear warning that the mere fact of such
ancestry is no assurance whatsoever of the adequacy of the form, a lesson which has been heeded in
the PADS form proposed here.

A number of other forms derived from utility maximization were reviewed in the article cited and

127

found wanting relative to the simple properties set out above. The only study which to my
knowledge has estimated these forms, AIDS, and the Almon form all on the same data and compared
the results is Gauyacq [1985]. Using French data for 1959-1979, he estimated "the linear
expenditure system of Stone; the model with real prices and income of Fourgeaud and Nataf; the
additive quadratic model of Houthakker and Taylor; the logarithmically additive model of
Houthakker, … the Rotterdam model of Theil and Barten, the Translog model based on a logarithmic
transformation of the utility function; the AIDS model of Deaton and Muellbauer; ….[and] the
model proposed by Clopper Almon." The conclusion was not surprising to anyone who had
compared the properties of the forms to the simple requirements stated above: "De l'étude que nous
avons effectué, il apparaît en définitive que seul le modèle de C. Almon constitue un système que
satisfasse approximativement aux attendus théoriques et présente un réel intérêt pour l'étude
économétrique de fonctions de demande détaillées." (p. 119). (From the study which we have done,
it appears that definitely only the model of C. Almon offers a system which satisfies approximately
theoretical expectations and is of real interest for the econometric study of detailed demand
functions.) Elegant theoretical derivations, apparently, are of little help in finding adequate forms.
Despite this relative success, there is a problem with the Almon suggestion, as we will see in section
20.3, where we will also see a way to fix it.

20.2. Slutsky Symmetry and Market Demand Functions

Just about the only useful non-obvious implication of the theory of the single consumer who
maximizes utility subject to a budget constraint is the Slutsky symmetry shown in equation (20.2.1).

∂ x i
k

∂ p j

+
∂ xi

k

∂ yk x j
k
=

∂ x j
k

∂ p i

+
∂ x j

k

∂ yk x i
k (20.2.1)

Here x i
k is the consumption of product i by individual k, yk

 is the nominal income of
individual k, and p j is the price of product j. A comparable relation, however, need not hold for
the market demand functions, the sum over all k of individuals' demand functions. Summing the
above equation over the individuals gives equation (20.2.2).

∂∑
k

x i
k

∂ p j

+
∑

k

∂ x i
k

∂ yk
x j

k
=

∂∑
k

x j
k

pi

+
∑

k

∂ x j
k

∂ yk
x i

k (20.2.2)

which is in general not the same as – and does not simply – equation 20.2.3.

∂∑
k

x i
k

∂ p j

+

∂∑
k

x i
k

∂∑
k

yk ∑
k

x j
k=

∂∑
k

x j
k

∂ pi

+

∂∑
k

x j
k

∂∑
k

y k ∑
k

x i
k

 (20.2.3)

which is what Slutsky symmetry of the market demand functions would imply. Thus, strict micro
theory does not imply Slutsky symmetry of market demand functions. Consequently, there is in
general no "representative consumer." To suppose that market demand functions derived by
maximizing the utility of this non-existent entity have "micro foundations" not enjoyed by functions
not so derived is hardly respectful of micro theory. Rather, any market demand functions so derived

128

are on exactly the same theoretical footing as market demand functions made up without any
reference to utility maximization. Both kinds of functions must meet the same "adequacy" criteria.
With that point clearly established, we may, however, ask: Are there restrictive conditions under
which equation (20.2.2) would imply equation (20.2.3)? One condition is, of course, that all
individuals should have not only the same utility function but also the same income, and that the
increase in aggregate income is accomplished by giving each the same increase. That condition is
hardly interesting for empirical studies. A less restrictive condition is that the marginal propensity to
consume a given product with respect to income should be the same for all individuals, or in effect,
that the Engel curves for all products should be straight lines. If, for example,

∂ xi
k

∂ yk =ai (20.2.4)

Then the second term on each side of equation 20.2.1 can be factored to yield

∂∑
k

x i
k

∂ p j

+a i∑
k

x j
k
=

∂∑
k

x j
k

∂ pi

+a j∑
k

xi
k (20.2.5)

This is exactly what equation (20.2.3) states, for in this case it makes no difference to whom the
"infinitesimal" increase in income is given and

∂∑
k

xi
k

∂∑
k

yk
=ai (20.2.6)

Now the assumption that all Engel curves are straight lines is generally contradicted by cross-section
budget studies, even when one uses total expenditure in place of income in the Engel curves. (See,
for example, Chao [1991] where Figure 2.2 shows Engel curves for 62 products). On the other hand,
many products have virtually straight Engel curves over a considerable middle range of total
expenditure where most households find themselves. Thus, one gets the impression that while
Slutsky symmetry is certainly not a necessary property of market demand curves, it probably does
no great violence to reality to impose symmetry to reduce the number of parameters to be estimated.

20.3. A Perhaps Adequate Form

The 1979 Almon article introduced a form with a multiplicative relation between the income terms
and the price terms. Its general form is:

x i(t)=(ai(t)+b i(y / P))∏
k=1

n

pk
cik (20.3.1)

where the left side is the consumption per capita of product i in period t and a i(t) is a function of
time. The bi are positive constants. The y is nominal income per capita; pk is the price index
of product k; and P is an overall price index defined by

P=∏
k=1

n

pk
sk (20.3.2)

129

where sk is the budget share of product k in the period in which the price indexes are all 1, and
the c ik are constants satisfying the constraint

∑
k =1

n

cik=0 (20.3.3)

Any function of this form is homogeneous of degree 0 in all prices and income and satisfies all of
the properties set out in the first paragraph. It has three problems:

1. It is not certain that expenditures will add up to income.

2. There is no way to choose the parameters to guarantee Slutsky symmetry at all prices if we
want to. We can, however, arrange to have symmetry in some particular base period. As
long as the shares of various products in total expenditure do not change very much from
those of that base period, we will continue to have approximate symmetry.

3. There are a lot of c's to be estimated.

Problem 1 can be easily fixed by adding on a "spreader," that is, by summing all expenditures,
comparing them with y, and allocating the difference in proportion to the marginal propensities to
consume with respect to y at the current prices. The amount to be spread is usually small and the
form with spreader has essentially the same properties as the form without, plus the adding up
property. We need not complicate the mathematics here by adding the spreader, but in practice it
should be added when the equations are used in forecasting.

Problem 2, in view of section 2, is more a cautionary note than a real problem. Symmetry in a base
year is probably quite adequate.

Problem 3 – which occurs in all forms which provide for varying degrees of substitution and
complementarity – can be quite severe. If we have 80 categories of expenditures, we have 6,400 c's
less the 80 determined by equation (10). If we have 20 years of annual data, we have 1,600 data
points from which to determine these 5,600 parameters, or 3.5 parameters per data point! Clearly,
we have to have employ some restrictions. Even if we had only one parameter per data point, we
would probably want restrictions to insure reasonableness of the parameters. Indeed, the principal
theoretical problem in consumption analysis is find ways to specify what is "reasonable."

Part of the solution of problem 3 can be found, if we wish, in the point noted in problem 2, namely
that we can impose Slutsky symmetry at some prices. The Slutsky condition may be derived either
from equation (20.2.1) or, more simply, by assuming that the compensating change in income is that
which keeps y/P constant. Either approach gives as the symmetry condition equation (20.3.4):

cij x i

p j

=
c ji x j

pi
 (20.3.4)

Multiplying both sides by
pi p j

y
gives equation 20.3.5.

cij

s j

=
c ji

si
 (20.3.5)

If we then define

130

λ ij=
cij

s j
 (20.3.6)

then the form can be written as

x i(t)=(ai(t)+b i(y / P))∏
k=1

n

pk
λ ik sk (20.3.7)

where
λ ij=λ ji (20.3.8)

This restriction cuts the number of parameters by a
half. That reduction is a big help but is clearly
insufficient. Further help with this problem can be
found through the idea of groups and subgroups of
commodities. The accompanying box shows an
example with fifteen basic commodity categories.
These are subdivided into three groups and several
categories which are not in any group. The first group
is divided into two subgroups; the second, into one
subgroup and a category not in the subgroup; the third
group has no subgroup.

The idea of the Almon [1979] article was to assume
that λij= λ0 if i and j are not members of the same
group or subgroup, while if they are in the same group, G, λij= λo+μ 'G , and if they are in the
same subgroup, g, of the group G, λij= λo+μ 'G+ν ' g . Thus, there were as many parameters to
estimate as there were groups + subgroups + 1. Estimation was fairly simple because, given a value
of λ0 , estimation of the other parameters had to involve only products within the same group or
subgroup. Several values of λ0 were chosen, all equations estimated, and the value of λ0
chosen which gave the best over-all fit.

The problem with this form was that products which had no natural partners with which to form a
group all ended up either in very strange groups or, if they were given no group at all, all with nearly
the same own price elasticity, namely −λ0 . It is often difficult to find groups for such goods as
Telephone service, Medical service, Education, or Religious services. A specification which forces
them all to have, for that reason, nearly the same own price elasticity is certainly inadequately
flexible. An adequate form, it now seems, should allow every product to have its own own-price
elasticity. We will then have as many price exponent parameters as there are products plus groups
plus subgroups. A simple way to achieve this generalization is to introduce n parameters, λ1 , ...,

λn , and use them to define the λij as follows. If i and j are not members of the same group or
subgroup, then

λ ij=λ i+λ j (20.3.9)

while if they are in the same group, G, λij= λi+λ j+μ 'G , and if they are in the same subgroup, g,
of the group G, λij= λi+λ j+μ 'G+ν ' g . The definitions apply only for i not equal to j. The λii
are each determined by equation (20.3.3), the homogeneity requirement.

131

Illustration of Groups and Subgroups

Product Group Subgroup
Food 1. Meat I A

2. Fish I A
3. Dairy products I A
4. Cereal products I B
5. Fruits and vegetables I B
6. Other food products I B

Transportation 7. Automobiles II C
8. Gasoline and oil II C
9. Tires, batteries, repair II C
10. Public transportation II

Clothing and Shoes 11. Clothing III
12. Shoes III

No Group 13. Other durables
14. Other non-durables
15. Other services

Using these definitions, for product i, a member of group G and subgroup g, the equation becomes

x i(t)=(ai(t)+b i(y / P)) ∏
k=1,k≠i

n

pk
(λ i+λ k)s k ∏

k∈G , k≠i

n

pk
μG ' sk ∏

k∈g , k≠i

n

pk
νg ' sk p i

cii (20.3.10)

Equation (20.3.3) requires

∑
k≠i

λk sk+λ i∑
k ≠i

sk+μG ' ∑
k ∈G ,k ≠i

sk+νg ' ∑
k ∈g ,k ≠i

sk+c ii=0 (20.3.11)

If we solve this equation for c ii and substitute in equation (20.3.10), we obtain, after a bit of
simplification,

x i(t)=(ai(t)+b i(y / P))(
pi

P
)

−λi

∏
k=1

n

(
pk

pi

)

λk sk

(∏
k∈G

(
pk

pi

)

sk

)
μ 'G

(∏
k ∈g

(
pk

pi

)

sk

)
ν ' g

 (20.3.12)

where we have inserted the terms involving p i / p i into all of the products, because this term is
always 1.0 no matter to what power it is raised. We can make the form even simpler by introducing
price indexes for the group G and subgroup g defined by:

PG=(∏k ∈G

pk
sk)

1/∑
k∈G

sk

 and Pg=(∏k∈g

pk
sk)

1 /∑
k ∈g

sk

(20.3.13)

We then obtain equation (20.3.14)

x i(t)=(ai(t)+b i(y / P))⋅(
p i

P
)
−λ i

∏
k=1

n

(
pi

pk

)
−λk sk

⋅(pi

PG
)
−μG

(pi

Pg
)
−ν g

 (20.3.14)

where

μ=μ ' ∑
k∈G

sk and ν=ν ' ∑
k ∈g

sk (20.3.15)

This is the form for estimation. Note that it has one parameter, a λ, for each good, plus one
parameter, a μ, for each group, plus one parameter, a ν, for each subgroup. Thus, it appears to have
an adequate number of parameters. The Slutsky symmetry of (20.3.14) at the initial prices and
income may be verified directly by taking partial derivatives of (20.3.14).

A special case of some interest arises when all the λi are the same and equal to λ0 /2 , for in
that case equation (20.3.14) simplifies to

x i(t)=(ai(t)+b i(y / P))(p i

P)
−λ i

(pi

PG
)
−μG

(pi

Pg
)
−ν g

 (20.3.16)

which is exactly the form suggested in the Almon [1979] article. Thus, the present suggestion is a
simple generalization of the earlier one. In practice, there are apt to be a few commodities, such as
Tobacco, Sugar, or Medical care which show so little price sensitivity that they cannot be fit well by
this system. For them, we will assume that all the λij in their rows and columns are 0. Note that
this assumption is perfectly consistent with the symmetry of the lambda's. When there are such
"insensitive" commodities in the system, equation (20.3.14) is modified in two ways. For these
items, there are no price terms at all, while for other items the product term which in (20.3.14) is

132

shown with k running from 1 to n is modified so that k runs only over the "sensitive" and not the
"insensitive" commodities.

It is useful in judging the reasonableness of regression results to be able to calculate the compensated
own and the cross price elasticities. ("Compensated" here means that y has been increased so as to
keep y/P constant.) Their derivation is straight-forward but complicated enough to make the results
worth recording. In addition to the notation already introduced, we need

u ij = the share in the base year of product j in the group which contains product i, or 0 if i is
not in a group with j.

w ij = the share in the base year of product j in the subgroup which contains product i or 0 if i is
not in a subgroup with j.

μi = the μ for the group which contains product i, or 0 if i is not in a group. Note that μi

is the same for all i in the same group.)
νi = the ν for the subgroup which contains product i, or 0 if i is not in a subgroup.

(Similarly, note that νi is the same for all i in the same subgroup.)

L = The share-weighted average of the λ i :

L=∑
k=1

n

λk sk (20.3.17)

The compensated own-price elasticity of product i is then:

ηii=−λi(1−si)−L+λ i si−μ i(1−uii)−νi(1−w ii) (20.3.18)

While the cross-price elasticity, the elasticity of the demand for good i with respect to the price of
good j, is

ηij=λ i s j+λ j s j−uijμ i+wij νi (20.3.19)

Two tables are produced by the estimation program. One shows, for each product, its share in total
expenditure in the base year, the group and subgroup of which it is a member and its share in them,
its λ and the μ and ν of its subgroups, its own price elasticity, and various information on the income
parameters. Thus, it contains all the data necessary for calculating any of the cross elasticities. It is
small enough to be reasonably reproduced. The other table shows the complete matrix of own- and
cross-price elasticities. It is generally too large to be printed except in extract.

It should be noted that the complexity in estimating equation (20.3.14) comes from the term
indicated by the product sign. Without this term, the equation could be estimated separately for each
product or group of products. On the other hand, it is this term which gives Slutsky symmetry at the
base point. If one did not care about this symmetry, then this term could omitted from the equation,
with a great reduction in complexity in estimation. Once the programming has been done to
estimate with this term, however, it is little trouble to use the program.

So far, we have said little about the "income" term, the term within the first parenthesis of equation
(20.3.14). In the equations reported below we have used just a constant, real income per capita, the
first difference of real income per capita, and a linear time trend. Furthermore, we have used the
same population measure, total population, for computing consumption per capita for all items. The
estimation program, however, allows much greater diversity. By use of adult-equivalency weights,

133

different weighted populations can be used for computing the per capita consumption of different
items. Further, if the size distribution of income is known, it can be used to compute income-based
indicators of consumption more appropriate to each item than just average income. Thus, the
program allows a different income variable to be used for each consumer category. Finally, instead
of just a linear time trend, one can use a "trend" variable appropriate to a particular category. For
example, the percentage of the population which smokes could be used in explaining spending on
tobacco. The estimation program allows for all these possibilities. On the other hand, in view of this
diversity, it seemed pointless to try to place constraints on the parameters of the income terms to
make the income terms add up to total income. Instead, in applying the estimated functions, one
should calculate the difference between the assumed total expenditure and that implied by the
equations and allocate it to the various items.

20.4. The Mathematics of Estimation

The function in equation (20.3.14) is nonlinear in all its parameters. In a system with 80
consumption categories there will be over 400 parameters involved in the simultaneous non-linear
estimation. This size makes it worthwhile to note in this section some simplifying structure in the
problem. All non-linear estimation procedures take some guess of the parameters, evaluate the
functions with these values to obtain vectors of predicted values, x̂ i , and subtract these from the
vectors of observed values, x i , to obtain vectors of residuals, r i , thus:

r i=x i− x̂ i (20.4.1)

They then, in some way, pick changes in the parameters, and re-evaluate the function with the new
values. The only difference in the various methods is how the changes in the parameters are picked.
The Marquardt algorithm, which we use, is very nearly the same as regressing the residuals on the
partial derivatives of the predicted values with respect to the parameters. It requires, in particular,
these derivatives. For equation (20.3.14), they are reasonably easy to calculate if one remembers (or
works out) the formula:

d ax

dx
=a x ln a (20.4.2)

Where ln denotes the natural logarithm. Then the derivative of the demand for the ith good with
respect to its own λ is

∂ x̂i

∂λ i
= x̂ i(ln(∏ pk

sk

pi
))= x̂ i(∑ sk ln pk−ln pi) (20.4.3)

and for j not equal to i

∂ x̂i

∂λ j
= x̂i ln(p j

pi
)s j= x̂ i(ln p j−ln p i) s j (20.4.4)

And if i is a member of the group G

134

∂ x̂i

∂μG
= x̂ i ln(PG

pi
)= x̂ i(ln PG−ln pi) (20.4.5)

and if i is a member of the subgroup g

∂ x̂ i

∂νg
= x̂i ln(Pg

p i
)= x̂ i(ln P g−ln p i) (20.4.6)

To explain the estimation process, we shall denote the vector of parameters of the "income-and-time
term," the term preceding the first dot in equation (20.3.14), for product i by ai and the vector of
parameters of the "price term", the rest of the formula, by h. Thus, h consists of all values of λ, μ,
and ν. Note that h is the same for all products, though a particular μ or ν may not enter the equation
for a given commodity. If we let Ai be the matrix of partial derivatives of the predicted values for
product i with respect to the ai and similarly let Bi be the matrix of partial derivatives of the
predicted values of product i with respect to h, and finally let ri be the residuals, all evaluated at the
current value of the parameters, then the regression data matrix, (X,y) in the usual notation, for three
commodities is:

(X , y)=[
A1 0 0 B1 r1

0 A2 0 B2 r2

0 0 A3 B3 r3
] (20.4.7)

If we now form the normal equations X'Xb = X'y in the usual notation, we find

[
A1

' A1 0 0 A1
' B1

0 A2
' A2 0 A2

' B2

0 0 A3
' A3 A3

' B3

B1
' A1 B2

' A2 B3
' A3 ∑

i=1

3

Bi
' Bi

][
da1

da2

da3

dh
]=[

A1
' r1

A2
' r2

A3
' r3

∑
i=1

3

Bi
' r i
] (20.4.8)

After initial values of the parameters have been chosen and the functions evaluated with these values
and the sum of squared residuals (SSR) calculated, the Marquardt procedure consists of picking a
scalar, which we may call M, and following these steps:

1. Compute the matrices of equation (20.4.8), multiply the diagonal elements in the matrix on
the left by 1 + M and solve for the changes in the ai and h vectors. Make these changes and
evaluate the functions at the new values.

2. If the SSR has decreased, divide M by 10 and repeat step 1.

3. If the SSR has increased, multiply M by 10, go back to the values of the parameters before
the last change, evaluate the functions again at these values, and repeat step 1.

The process is stopped when very little reduction in the SSR is being achieved and the changes in the
parameters are small. (As M rises, the method turns into the steepest descent method, which can
usually find a small improvement if one exists, while as M diminishes, the method turns into

135

Newton's method, which gives rapid convergence when close enough to a solution that the quadratic
approximation is good.)

To economize on space in the computer and to speed the calculations, we can take advantage of the
structure of the matrix on the left side of equation (20.4.8). To do so, let Zi be the inverse of Ai'Ai.
Then by Gaussian reduction (20.4.8) can be transformed into

[
I 0 0 Z 1 A1

' B1

0 I 0 Z 2 A2
' B2

0 0 I Z 3 A3
' B3

0 0 0 ∑
i=1

3

Bi
' Bi−Bi

' Ai Z i Ai
' Bi

][
da1

da2

da3

dh
]=[

Z 1 A1
' r 1

Z 2 A2
' r2

Z 3 A3
' r 3

∑
i=1

3

Bi
' r i−Bi

' Ai Z i Ai
' r i
] (20.4.9)

The columns of the matrix on the left which are just columns of the identity matrix do not need to be
stored in the computer. Instead, the program computes the terms in the last column of this matrix
and in the vector on the right, stores only them, and at the same time builds up the sums in the lower
right corner of the matrix and in the bottom row of the vector on the right. Once the matrix and
vector of equation (20.4.9) are ready, the program solves the equations in the last row for dh and
then substitutes back into the other equations to solve them for the dai.

The estimation program initializes the income parameters by regressing the dependent variables on
the just the constant, income, and trend terms. Then all lambda's are started at .25 and all mu and nu
at 0. The program was written in Borland C++ with a double-precision version of the BUMP library
of matrix and vector objects and operators. The time required to do the estimation seems to be
roughly proportional to the fourth power of the number of sectors. The work of evaluating the B
matrices and taking B'B grows roughly with the cube of the number of sectors, so the time required
for a single iteration grows with the cube of the number of sectors. The number of iterations,
however, seems to grow at least linearly with the number of sectors, so the total time required should
grow with the fourth power of the number of sectors. Thus, a 90-sector study can be expected to
take about 16 times as long to estimate as a 45-sector study. This is roughly what we have
experienced, with the 93-sector USA system requiring about 100 minutes and the 42-sector Spanish
study five or six minutes on a 133 MHz pentium. The USA study required about 120 iterations. The
big drops in the objective function started to appear after about 80 iterations.

136

20.5. Comparative Estimation for France, Italy, Spain, and the USA

To test how adequate this system is for representing the
consumer behavior in a variety of countries, it has been
estimated for France, Italy, Spain, and the USA. At the same
time, so that the results would tell us something about the
similarities and differences among these countries, the
categories have been a been made as similar as possible. The
categories, the groups, and the sub-groups are shown in the
box to the right.

In using the word “test,” I should make clear that I do not
mean anysort of test of statistical “significance,” which I
regard as essentially meaningless here. The test is rather to see
whether the system is flexible enough to fit the historical data
with plausible values of the parameters. Moreover, it is not a
test to see whether the program can find those reasonable
values from the data alone. Whether or not that is possible
depends upon what range of experience history has given us.
It is often necessary to tell the program what values are
plausible by soft constraints. The details of how that has been
done are described in Appendix A on using the program. The
Italian and Spanish data were for forty categories of consumer
expenditures, most of them being exactly comparable. The
French data were more detailed but were clearly based on the
same statistical concepts and could be aggregated to match the
Spanish and Italian. The three European datasets showed that
the statisticians who had prepared them had been talking to
one another and had achieved some degree of comparability.
No such fundamental comparability infected the U.S. data. It
was, however, available in much more detail than was the
European, and in most cases, it was possible to match the
European concept – as I understand it from the words in the
definition – fairly closely. There were a few exceptions among
foods. The Europeans had the following sectors:

6 Fruits and vegetables, except potatoes
7 Potatoes
9 Coffee, tea, and cocoa

I could not match these in the U.S. data but made up three
sectors which at least keep the numbering the same for the other sectors. These were:

6 Fresh fruit
7 Fresh vegetables
9 Processed fruits and vegetables

Other known noncomparabilities included the Italians having no sector for Education but only one
for text books, while the Spanish did not attempt to divide "all-included" vacation packages between

137

Groups and Subgroups for International Comparison

I. Food group
1 Cereal and bakery products
A. Protein source subgroup

2 Meat
3 Fish & seafood

4 Dairy products
5 Fats & oils
6 Fresh fruit
7 Fresh vegetables
8 Sugar & sweets
9 Processed fruit and vegetables
10 Other prepared food, Pet food
11 Nonalcoholic beverages
12 Alcoholic beverages

II. Clothing group
14 Clothing and its cleaning and repair
15 Footwear and repair

III. House furnishing and operation group
18 Furniture
19 Floor coverings and textile products
20 Kitchen & hh appliances
21 China & glaswr, tablwr & utensils
22 Other non-durables and services
23 Domestic services
32 TV, radio, audio, musical instruments, computers

IV. Medical group
24 Drug preparations and sundries
25 Ophthalmic & orthopedic eqpt
26 Physicians, dentists, other
27 Hospitals, nursing homes

V. Transportation group
A. Private transportation

28 Vehicles
29 Operation of motor vehicles

30 Public transportation
Ungrouped products

13 Tobacco
16 Tenant-occupied nonfarm space
17 Electricity, oil, gas, coal, water
31 Communication
33 Books & maps, Magazines and newspapers
34 Education
35 Recreational services
36 Personal care
37 Hotels & motels, restaurants
38 Other goods
39 Financial services and insurance
40 Other services

Extra American sectors not in European accounts
41 Food furnished to employees and food consumed on farms
42 Owner-occupied housing
43 Foreign travel
44 Imputed financial services

Transportation and Hotels and restaurants though the others did. Finally, the U.S. has four categories
which have no corresponding component in the European accounts. First, and largest, is the imputed
space-rental value of owner-occupied housing, which is seemingly not in the System of National
Accounts (SNA) used by the Europeans. Second is Services rendered without payment by financial
intermediaries (e.g. free checking accounts). The existence of these services is recognized by the
SNA, but the European statistical offices (incorrectly) consider that all of these services are rendered
to businesses, and thus appear in the intermediate part of the input-output table and do not enter
GDP. Foreign travel shows up elsewhere in the European accounts and was not among the data
series I had. Finally, Food furnished to employees or eaten on farms seems not to be part of the
European system or appears directly in the various food categories. These extra sectors account for
about 15 percent of American consumption. Within the forty more or less comparable sectors, the
share of the American sectors in total consumption will average about 15 percent below the
European.

The regressions were run from 1971 to 1994 (1993 for France.) It quickly became apparent that
nearly all of the histories could be fit well, but often one or more of the parameters would have
nonsense values. The income elasticity might turn out negative while there was a strong positive
time trend. The own price elasticities, which should be negative, frequently turned out positive,
perhaps at the same time that the income elasticity was negative. In short, the data were
insufficiently varied to identify the parameters. Fortunately, the program used for the estimation
(our creation) allowed for imposing "soft" constraints, which are essentially extra, artificial
observations designed to tell the computer, before the estimation, what would be sensible regression
coefficients. By using soft constraints, it is often possible to find equations with sensible coefficients
which fit almost as well as the unconstrained equation. Except in Spain, where there was a drop in
income in the mid 1980's before entry into the Common Market, time and income were very
collinear, and it was necessary to softly constrain the time variable to be close to zero, though not
exactly zero. In Spain, there was also a very soft constraint suggesting that the time trend coefficient
should be small, but it was softer than in the other countries and consequently stronger time trends
appear in the Spanish equations than in the others. In cases of products which evidently had strong
time trends in tastes, such as fats and oils or tobacco, the soft constraint on the time trend was
removed. Of course, the fact that soft constraints were used which were not identical in the different
countries may reduce the comparability of the results. But it also shows that the system can be
adapted to the situation in different countries.

Before commenting on the individual products, let us look at the results for the group parameters, as
shown below.

Table 20.5.1 Comparison of Group and Subgroup Parameters for Four Countries

The components of the Food group did indeed turn out to be substitutes in the USA, Spain, and,
especially, France. The protein sources were especially strong substitutes with one another in France
and less so in Spain and Italy. In the USA, their special interaction was in the direction of
complementarity. Buying cars and operating them were decidedly complements in the USA, Spain,

138

Food Clothing Housing Medical Transport Protein PvtTrans
USA 0.25 0.96 -0.23 -0.26 0.06 -0.05 -0.54
Italy -0.02 1.83 0.70 0.33 0.02 0.09 0.48
Spain 0.12 -0.34 0.21 0.00 0.07 0.20 -0.28
France 0.61 0.15 0.77 -1.36 0.07 0.57 -0.51

μ ' sacross countries ν ' s

and France, but were rather strongly substitutes in Italy. The Italians may not, however, be totally
crazy; automobile repair and new cars may indeed be substitutes. Shoes and Clothing turn out to be
strongly substitutes in the USA and Italy, weak substitutes in France, and complements in Spain. he
household furnishing and operating sectors showed considerable interaction, but were complements
in America and substitutes in Europe. The medical sectors were complements in America and
France and weakly substitutes in Italy. There is little interaction between public and private
transportation in any of the countries.

Examining the individual sectors shows many interesting differences as well as some basic
similarities among the countries. For each product, we will show the results of estimation for all
four countries. The order of lines in these mini tables is USA, Italy, Spain, France. The sector titles
have been left in the original language both to indicate the country and to describe as exactly as
possible the content. On each line in the minitables for each product, you will find:

nsec The sector number

title The title of the product group in the language of the country

G The number of the group in which the product is included. A 0 indicates that it was not in
a group.

S The number of the product’s subgroup. A 0 means that it was not in a subgroup.

I Inclusion code: 1 if the product was included in the estimation of the system, otherwise 0.

lamb The value of lambda, λ, for this product.

Share The share of this product in total consumption in the base year, the year when all the
prices were equal to 1. Unfortunately for purposes of comparison of these shares, the
base years were different: 1992 for the USA, 1988 for Italy, 1986 for Spain, and 1980 for
France. These differences should have little effect on comparability except on these
shares.

IncEl The income elasticity, the percentage by which purchases of this item increase when
income increases one percent.

Dinc The ratio of the coefficient on the change in income to the coefficient on income.

Time% The change in demand for the product due to the passage of one year (without change in
income or price) expressed as a percentage of the average purchase.

PrEl The elasticity of demand for the product with respect to its own price.

Err% Standard error of estimate expressed as a percentage of the average value.

Rho Autocorrelation coefficient of the residuals.

139

The commentary on each group also reflects looking at the graph of the fit in each country for each
product. These graphs are, unfortunately, too space-intensive to print.

1. Bread and bakery products
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
1 Cereal and bakery produ 1 0 1 0.18 0.013 0.18 -0.60 0.01 -0.55 4.33 0.80
1 Pane e cereali 1 0 1 0.06 0.024 0.13 -1.59 0.00 -0.12 1.56 0.74
1 Pan y cereales 1 0 1 -0.12 0.026 0.18 -0.17 -0.26 -0.02 2.53 0.61
1 Pain et cereales 1 0 1 0.05 0.024 0.45 -0.03 0.00 -0.69 1.44 0.49

The Food group holds some striking similarities among the countries as well as big differences.
Bread and bakery products (1) have seen virtually no growth in per capita consumption over the
years covered here. Note, however, that the share is nearly twice as high in Europe as in America.
The income elasticities, however, do not come out at zero but have been offset in the US and France
by significant price elasticities. Italy shows both smaller income elasticities and small price
elasticity, while in Spain the income elasticity comes out the same as that in the US but is offset by a
negative trend of half a percent per year. The higher income elasticity in France may reflect the
attractiveness of real croissants, brioche, and the like.

2. Meat
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
2 Meat 1 1 1 -0.16 0.018 0.03 0.47 -0.20 -0.19 3.98 0.74
2 Carne 1 1 1 0.05 0.056 0.23 2.00 0.00 -0.15 2.78 0.81
2 Carne 1 1 1 0.01 0.066 0.49 -1.00 -0.13 -0.21 2.94 0.50
2 Viandes 1 1 1 -0.80 0.062 0.54 0.00 0.00 -0.04 1.89 0.81

Only Spain has seen any noticeable growth in Meat (2) demand since 1980. It showed an income
elasticity of .5 as did France, but Spain has had greater income growth. Both the US and Italy have
very low income elasticities, though Italy has a positive “taste” term, while the US and Spain both
show negative “taste” trends.

3. Fish and seafood
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
3 Fish & seafood 1 1 1 1.78 0.002 1.17 -0.07 -0.20 -2.12 8.90 0.52
3 Pesce 1 1 1 0.01 0.013 0.89 0.20 0.00 -0.15 4.17 0.83
3 Pescado 1 1 1 -0.02 0.024 0.35 -0.13 -0.34 -0.27 4.45 0.80
3 Poissons 1 1 1 0.00 0.008 1.58 0.11 0.00 -1.22 5.19 0.65

In striking contrast to Bread and Meat, Fish and seafood (3) shows strong income elasticities, above
1.0 in the USA, Italy, and especially France. Fish is definitely the food of the affluent in these
countries, while it definitely is not in Spain, where consumption has declined steadily as income
rose. Note, however, that the share of fish in the budget of Pedro was twice that of Pietro, three times
that of Pierre, and twelve times that of Peter.

140

4. Milk and dairy products
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
4 Dairy products 1 1 1 -0.01 0.008 0.11 -0.13 -2.35 -0.34 6.53 0.70
4 Latte, formaggi 1 1 1 0.07 0.029 0.48 0.64 0.00 -0.20 1.97 0.69
4 Leche, queso y huevos 1 1 1 -0.10 0.033 0.07 -0.33 0.86 -0.18 3.68 0.79
4 Lait fromages et oeufs 1 1 1 0.04 0.025 0.83 0.04 0.00 -1.11 3.86 0.82

When it comes to Milk and dairy products (4), the US is the outlier. The European countries, where
consumption runs from 2.5 to 3.3 percent of the total budget, have been increasing consumption
steadily, while the USA is cutting back sharply from its already low share of .8 percent. The
equation for France attributes the growth to income, the Spanish and Italian equations, more to taste
trends. One may say that the American concern about cholesterol has not penetrated the European
mind, or one may say that the American cheese industry has never approached the European in
placing temptation in front of the consumer.

5. Fats and oils
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
5 Fats & oils 1 0 1 -0.08 0.002 0.06 -0.14 -0.37 -0.32 6.84 0.66
5 Oli e grassi 1 0 1 -0.04 0.008 0.07 2.43 -0.04 -0.03 2.85 0.73
5 Aceites y grasas 1 0 1 -0.08 0.011 0.06 -1.05 -0.54 -0.06 2.77 0.72
5 Huiles et graisses 1 0 1 -0.17 0.009 0.10 -0.62 -1.36 -0.53 2.42 0.34

6. Fruit and vegetables
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
6 Fresh fruit 1 0 1 0.15 0.003 0.86 -0.21 -2.48 -0.55 6.35 0.67
6 Frutta 1 0 1 0.05 0.043 0.26 -0.73 0.00 -0.11 1.64 0.04
6 Frutas y verduras 1 0 1 0.01 0.033 0.44 0.23 -1.04 -0.14 3.38 0.62
6 Fruits et legumes sauf 1 0 1 -0.45 0.025 0.20 0.52 0.00 -0.22 2.70 0.74

7. Fresh vegetables
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
7 Fresh vegetables 1 0 1 0.12 0.004 0.93 -0.20 -1.82 -0.52 8.96 0.77
7 Patate 1 0 1 -0.05 0.002 0.18 0.62 -0.01 -0.01 3.45 0.23
7 Patatas y tubérculos 1 0 1 -0.05 0.005 0.03 -1.07 -2.35 -0.10 6.60 0.70
7 Pommes de terre et autr 1 0 1 -0.63 0.002 -0.04 -6.46 -1.48 -0.09 7.63 0.67

Fats and oils (5) have uniformly low income elasticities and negative taste trends. Fruit has been
declining in the US, while Fruit and vegetables (6), including canned and frozen, have been rising in
Italy and stable in Spain and France. Recall that the sectoral definitions are not comparable here.
The rest of the story for the US is found in Fresh vegetables (7), also in gentle decline, and in
Processed fruits and vegetables (9), which also fails to show any growth. The total share for the US
is 1.3 percent of the budget,only a half or a third of that of the European countries. That low share
does not necessarily mean that we consume less than they do of these products. There are at least
two other factors: larger total consumption and lower prices on agricultural products. The graphs for
Potatoes show that the French are rapidly losing their appetite for French fries, as are the Spanish,
while the Italians are not.

141

8. Sugar
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
8 Sugar & sweets 1 0 1 0.02 0.006 -0.01 2.83 -0.52 -0.41 5.92 0.47
8 Zucchero 0 0 0 0.00 0.003 0.10 7.14 -0.01 0.00 3.32 0.48
8 Azúcar 0 0 0 0.00 0.002 0.09 -0.65 -0.50 0.00 4.32 0.87
8 Sucre 1 0 1 -0.30 0.002 0.09 0.97 -2.83 -0.42 5.11 0.34

9. Coffee, tea & chocolate
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
9 Processed fruit and veg 1 0 1 -0.09 0.006 0.02 -0.27 -0.07 -0.30 6.16 0.86
9 Caffe, te, cacao 1 0 1 -0.03 0.005 0.43 -0.31 0.00 -0.03 2.73 0.67
9 Café, té y cacao 1 0 1 -0.01 0.006 0.03 -1.12 -0.44 -0.14 3.65 0.77
9 Cafe, thé 1 0 1 -0.44 0.006 0.24 -0.43 0.00 -0.27 6.84 0.90

Sugar (8) proved to be a problem in both Italy and Spain and was removed from the system in these
two countries. The problem arose from substantial fluctuations in the price which had little effect on
consumption. In the US and France, the system had no problem handling the product, and virtually
identical price elasticities, -.4, were found. In France, however, there has been a strong trend away
from sugar not seen in the US.

10. Other prepared foods
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
10 Other prepared food, Pe 1 0 1 -0.05 0.017 1.63 -0.72 0.00 -0.31 4.52 0.79
10 Altri generi alimentari 1 0 1 -0.03 0.006 0.64 -0.85 -0.01 -0.03 5.02 0.79
10 Otros alimentos 1 0 1 -0.02 0.007 0.34 -0.21 0.88 -0.13 2.08 0.71
10 Autres produits aliment 1 0 1 0.06 0.014 1.83 0.08 0.00 -0.74 3.25 0.49

The Other prepared foods (10) category , which includes the sauces, mixes, and just-run-it-in-the-
microwave products have shown strong growth. For the USA, Italy, and France the equations
attribute this growth to income, because of the aversion to time trends expressed in the soft
constraints. In Spain, however, there were greater fluctuations in income and it was easier for the
regression to distinguish time from income. It found that the income elasticity was actually fairly
low, .34, and used a strong time trend, .9 percent per year, to account for the growth.

11. Soft drinks
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
11 Nonalcoholic beverages 1 0 1 0.11 0.009 0.77 1.35 -0.01 -0.50 4.83 0.60
11 Bevande analcoliche 1 0 1 -0.01 0.004 1.58 -1.37 -0.04 -0.05 7.68 0.83
11 Bebidas no alcohólicas 1 0 1 -0.12 0.005 1.12 -0.60 -0.66 -0.03 3.50 0.57
11 Boissons non alcoolisee1 0 1 0.12 0.004 1.82 0.18 0.01 -0.83 10.11 0.77

The Soft drink industry (11), stagnant in the U.S. despite an income elasticity of .8 because of sharp
price increases, has boomed in Italy and France, with income elasticity estimates of 1.6 and 1.8,
respectively. The Spaniards have not been so easily seduced; they show an income elasticity of 1.1
and a negative time trend of .7 percent per year.

142

12. Alcoholic beverages
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
12 Alcoholic beverages 1 0 1 0.38 0.018 0.03 -0.02 -0.05 -0.73 3.55 0.84
12 Bevande alcoliche 1 0 1 -0.04 0.012 0.01 23.43 -0.90 -0.02 2.80 0.52
12 Bebidas alcohólicas 1 0 1 -0.07 0.014 0.09 4.24 -1.17 -0.08 5.70 0.72
12 Boissons alcoolisees 1 0 1 -0.01 0.024 0.17 -0.07 0.00 -0.64 2.36 0.75

Alcoholic beverage (12) sales have been static in the USA country and France, but declining in Italy
and Spain. All countries showed very low income elasticities.

13. Tobacco
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
13 Tobacco 0 0 1 0.33 0.012 0.11 -0.02 -1.20 -0.48 3.16 0.21
13 Tabacco 0 0 0 0.00 0.016 0.03 37.79 1.03 0.00 7.10 0.86
13 Tabacos 0 0 1 0.06 0.016 0.34 -0.65 0.16 -0.09 3.00 0.53
13 Tabac 0 0 1 0.06 0.011 0.93 0.02 0.00 -0.17 2.82 0.76

The sharp decline in the use of Tobacco (13) in the USA has no parallel in Europe. In France, it was
even rising up until 1992, showing an income elasticity of .93.

14. Clothing
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
14 Clothing and its cleani2 0 1 0.00 0.044 1.36 -0.72 0.00 -0.30 1.31 0.46
14 Vestiario incl.riparazi2 0 1 0.09 0.083 0.88 1.14 0.00 -0.53 2.57 0.64
14 Vestido 2 0 1 0.07 0.064 0.78 0.00 -0.74 0.00 2.97 0.46
14 Habillement sf chaus. 2 0 1 0.22 0.059 0.15 -0.13 0.00 -0.33 2.16 0.66

One of the surprises for me was the sad story of France in the consumption of Clothing (14). I had
thought of the French as fashion conscious. Not at all, according to these equations. Clothing
accounts for a smaller share in France than in any of the other European countries. The French
income elasticity is only .15, against .8 for Spain, 1.4 for the U.S., and .9 for Italy, which has also the
highest share of the budget going to clothes. Clearly it is the Italians who are the sartorially
conscious nation.

15. Footwear
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
15 Footwear and repair 2 0 1 0.04 0.008 1.23 -0.03 0.02 -1.00 4.48 0.62
15 Calzature incl riparazi2 0 1 -0.13 0.022 1.20 1.71 0.00 -1.40 6.28 0.86
15 Calzado 2 0 1 0.14 0.024 1.23 -0.21 -2.96 0.09 2.94 0.35
15 Chaussures y.c.reparat.2 0 1 0.05 0.014 0.17 -0.32 0.00 -0.28 2.40 0.70

The same story holds for Footwear (15). The U.S., Spain, and Italy all came out with an income
elasticity of 1.2, while in France it was only .2.

16. Rent
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
16 Tenant occupied nonfrm 0 0 1 0.05 0.046 0.98 -0.39 0.00 -0.21 2.20 0.71
16 Affitti per abitazioni 0 0 1 0.00 0.107 1.00 -0.42 0.00 -0.08 1.84 0.77
16 Alquileres y agua 0 0 1 0.03 0.111 0.53 -0.26 0.48 -0.05 6.98 0.96
16 Logement et l'eau 0 0 1 0.02 0.123 1.69 0.05 0.00 -0.12 2.55 0.69

Rent (16) on living quarters has risen steadily in all four countries; the income elasticities are 1.0 in

143

the U.S. and Italy; 1.7 in France; but only .5 in Spain. Rental payments did not fall during the
Spanish slump of the early 1980's, so the equation attributes most of the growth to the time trend
rather than to income.

17. Energy
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
17 Electricity, oil, gas, 0 0 1 -0.11 0.027 0.15 -0.08 0.00 -0.05 2.90 0.56
17 Combust.&energia elettr0 0 1 -0.01 0.033 0.87 -0.07 0.00 -0.06 3.74 0.70
17 Calefacción y alumbrado0 0 1 0.01 0.025 0.84 -0.28 2.08 -0.04 1.99 0.56
17 Electricité et combusti0 0 1 0.00 0.052 0.53 -0.10 0.00 -0.11 3.95 0.45

Energy consumption (17) has been virtually constant in the U.S.; the equation found low income and
price elasticities. All three European countries, but especially Spain, have seen significant growth.
It is interesting that in Spain, where the equation was given less indication to avoid trend terms than
in Italy and France, it used that extra freedom to get virtually the same income elasticity as was
found in Italy, attributing the extra growth in Spain to the time trend.

18. Furniture
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
18 Furniture 3 0 1 -0.03 0.009 1.06 -0.03 -0.01 0.06 4.36 0.49
18 Mobili 3 0 1 0.04 0.028 1.57 0.26 0.00 -0.67 2.79 0.49
18 Muebles 3 0 1 0.08 0.021 1.38 -0.37 -1.95 -0.27 2.85 0.38
18 Meubles, tapis, y.c. re3 0 1 0.57 0.031 0.43 -0.44 0.00 -1.23 4.67 0.66

The French are again the outlier in demand for Furniture (18). Spanish and Italian income
elasticities are high and similar, 1.6 and 1.4 respectively; the US is a respectable 1.1; but France is
only .4. Clearly the French have other priorities.

19. Carpets, curtains and household linens
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
19 Floor coverings and tex3 0 1 0.06 0.004 1.64 -0.02 -0.17 -0.01 8.43 0.73
19 Biancheria e altri arti3 0 1 -0.04 0.011 1.42 -0.30 0.00 -0.68 6.98 0.87
19 Artículos textiles 3 0 1 0.00 0.009 1.19 0.38 -1.08 -0.22 5.69 0.80
19 Art. de ménage en texti3 0 1 0.00 0.007 0.00 -59.48 -0.03 -0.84 3.59 0.54

The story is the same for Carpets, curtains, and household linens (19). The French Income elasticity
is exactly 0, while it is 1.2 to 1.6 for the other three countries.

20. Kitchen and household appliances
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
20 Kitchen & hh appliances 3 0 1 0.10 0.005 0.53 -0.06 -0.04 -0.05 5.31 0.65
20 Elettrodomestici 3 0 1 -0.37 0.012 1.14 0.64 0.00 -0.35 2.55 0.44
20 Electrodomésticos 3 0 1 -0.10 0.010 1.64 0.71 -1.27 -0.12 5.30 0.69
20 Ap. de cuis., de chauf. 3 0 1 -0.02 0.016 0.44 -0.31 0.00 -0.76 4.10 0.59

144

Kitchen and household appliances (20) show a similar pattern, except that both the U.S. and France
have income elasticities close to .5, while in Italy and Spain, they are 1.1 and 1.6 respectively.

21. China, glassware and tableware
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
21 China & glaswr, tablwr 3 0 1 0.32 0.005 0.74 -0.03 0.08 -0.27 3.47 0.64
21 Cristallerie,vasellame 3 0 1 -0.66 0.006 1.02 0.21 -0.03 -0.10 3.28 0.61
21 Utensilios domésticos 3 0 1 0.04 0.005 0.17 -0.38 -1.65 -0.27 9.62 0.82
21 Verrerie, vaisselle et 3 0 1 -0.01 0.015 0.41 -0.17 0.00 -0.78 2.41 0.47

It is Italians and Americans who care about China, glassware, and tableware (21). The French
have been particularly sensitive to the rising relative price of these products.

22. Other non-durables
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
22 Other non-durables and 3 0 1 0.59 0.019 0.52 -0.01 0.00 -0.57 2.05 0.45
22 Art.non dur. e servizi 3 0 1 -0.24 0.011 1.32 -1.92 0.01 -0.49 7.99 0.72
22 Mantenimiento 3 0 1 -0.10 0.015 0.95 0.12 -1.07 -0.11 3.82 0.70
22 Art. de ménage non-dur 3 0 1 0.01 0.018 1.15 0.02 0.00 -0.78 2.08 0.72

23. Domestic service
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
23 Domestic services 3 0 1 1.14 0.003 0.84 -0.02 -5.13 -1.08 10.45 0.80
23 Servizi domestici 3 0 1 0.03 0.025 1.44 0.33 0.00 -0.68 6.83 0.89
23 Servicio doméstico 3 0 1 -0.06 0.007 1.10 -1.06 -2.24 -0.17 7.91 0.79
23 Services domestiques 3 0 1 0.01 0.010 0.56 -0.04 0.00 -0.82 5.56 0.75

Domestic service (23) fell steadily in the U.S. from 1950 up to 1981, whereupon it suddenly
stabilized and began a slow rise. Strikingly similar patterns appear in Spain and France, with low
points in 1986 or 1987. Italy, by contrast, has shown strong growth all along, with an income
elasticity of 1.4. All equations except the Spanish showed strong price elasticities.

24. Medicines
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
24 Drug preparations and s 4 0 1 0.08 0.018 1.42 -0.02 0.04 0.00 3.48 0.62
24 Medicinali e prod. farm 0 0 0 0.00 0.022 2.58 -1.01 -0.04 0.00 6.66 0.82
24 Medicamentos 4 0 0 0.00 0.016 3.03 -0.96 -1.42 0.00 15.31 0.84
24 Medicaments et autres p 0 0 1 1.06 0.021 1.50 0.21 0.00 -1.13 7.62 0.70

Medicines (24) have shown explosive growth in Europe. Note that all three European graphs ran off
the standard scale. In Italy and France, this sector had to be thrown out of the system. The prices
were rising and demand was soaring. Clearly, the problem was that the medicines were being paid
for by third parties. The budget constraint had little relevance for the European buying medicine.

145

25. Ophthalmic and orthopedic devices
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
25 Opthalmic & orthopedic 4 0 1 0.07 0.003 2.35 -0.02 -0.34 0.02 9.62 0.73
25 Apparecchi e mater. ter 0 0 0 0.00 0.003 1.67 -0.70 -0.06 0.00 4.85 0.82
25 Aparatos terapéuticos 4 0 0 0.00 0.003 1.31 -1.28 0.20 0.00 9.59 0.82
25 Ap. et mat. therapeutiq 0 0 0 0.10 0.002 2.35 0.09 1.94 0.00 8.81 0.75

Similarly, Ophthalmic and orthopedic devices (25) could not be accommodated in the system in Italy
and France. No price sensitivity but enormous income sensitivity is found in all countries.

26. Services of physicians, dentists and other medical professionals
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
26 Physicians, dentists, o 4 0 1 0.00 0.066 1.60 -0.02 0.00 -0.01 4.16 0.76
26 Serv. medici, infermier 4 0 1 0.26 0.024 1.29 -0.09 0.00 -0.44 4.85 0.79
26 Servicios médicos 4 0 0 0.00 0.010 1.80 -0.91 -0.70 0.00 8.58 0.81
26 Serv. des medecins infi 4 0 1 1.73 0.033 1.00 0.07 2.82 -1.25 5.02 0.66

Services of physicians, dentists, and other medical professionals (26) could be handled by the system
in all countries. Only France, however, showed strong price sensitivity -- the U.S. showed none.

27. Hospitals
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
27 Hospitals, nursing home 4 0 1 0.07 0.063 1.40 -0.57 0.00 -0.07 3.54 0.86
27 Cure in ospedali&clinic 4 0 1 0.09 0.013 0.58 -2.59 0.00 -0.38 3.25 0.41
27 Atención hospitalaria y 4 0 0 0.00 0.006 0.89 -1.70 -0.83 0.00 5.07 0.63
27 Soins des hopitaux et a 4 0 1 0.91 0.018 0.32 -0.18 0.00 -0.11 2.93 0.53

The demand for Hospitals (27) has been decidedly more moderate than for the other members of the
health care group. Only the U.S. shows an income elasticity greater than 1.0, and the French is
down to .3.

28. Automobiles
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
28 Vehicles 5 2 1 0.16 0.043 1.32 -0.35 -0.01 -0.03 8.65 0.64
28 Acquisto di mezzi trasp 5 2 1 0.90 0.044 1.27 2.55 0.00 -1.17 5.98 0.46
28 Compra de vehículos 5 2 1 0.16 0.036 1.85 1.04 0.99 -0.04 8.06 0.42
28 Automobiles, caravanes, 5 2 1 0.17 0.041 1.36 -0.04 0.00 0.03 8.87 0.56

The income elasticity for Automobiles (28) is strong in all countries: 1.3 in the U.S., Italy, and
France, and 1.8 in Spain -- and the Spanish equation has a 1 percent per year time trend on top of
that income elasticity. The Spanish are plainly making up for lost time in equipping themselves to
congest their streets and highways. Price sensitivity was slight, except in Italy.

146

29. Motor vehicle operation
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
29 Operation of motor vehi 5 2 1 0.27 0.060 0.67 -0.03 0.00 -0.20 2.20 0.42
29 Spese es. dei mezzi tra 5 2 1 -0.04 0.052 0.87 -1.26 0.00 -0.28 2.67 0.52
29 Gasto de uso de vehícul 5 2 1 0.10 0.075 1.10 -0.07 0.48 -0.06 2.15 0.54
29 Utilisation des véhicul 5 2 1 0.19 0.089 0.76 -0.13 0.00 -0.14 2.07 0.44

Motor vehicle operation (29), however, has an income elasticity of only .7 to .9 in three countries
and 1.1 in Spain, where there is also a noticeable positive time trend.

30. Public transportation
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
30 Public transportation 5 0 1 0.17 0.008 0.43 -0.04 -0.05 -0.38 5.04 0.74
30 Acquisto serv. di trasp 5 0 1 0.00 0.016 0.90 -0.89 0.00 -0.09 2.43 0.39
30 Servicios de transporte 5 0 1 0.04 0.018 0.45 0.42 0.97 -0.13 1.95 0.16
30 Services de transport 5 0 1 0.07 0.022 0.89 -0.06 0.00 -0.24 2.76 0.74

Public transportation (30) claims a share of the consumer budget in Europe that is twice as large as
the American share. Moreover, the income elasticities in Italy and France are twice what they are in
the U.S. The U.S., however, is the most price sensitive, though the elasticity is only -.4.

31. Communications
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
31 Communication 0 0 1 0.20 0.019 1.52 -0.92 0.00 -0.35 2.71 0.80
31 Comunicazioni 0 0 1 1.16 0.011 1.55 -1.10 0.08 -1.22 5.84 0.58
31 Comunicaciones 0 0 1 -0.01 0.008 1.28 -0.33 2.76 -0.02 3.85 0.41
31 Telecommunications et p 0 0 1 0.04 0.015 3.75 0.08 0.01 -0.15 6.73 0.63

Communications (31) ran off the standard scale in all the European graphs. In Spain, where the
equation was freer to use a time trend, the income elasticity came in at 1.3 with a strong positive
trend of 2.8 percent per year added on to the income effect. In France, the equation attributed all the
growth to income with a elasticity of 3.7! Since in both countries, much of the growth is attributable
to the modernization of a once stodgy telephone monopoly, I suspect the Spanish equation is more
appropriate.

32. TV, radio, audio, musical instruments and computers
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
32 TV, radio, audio, music 3 0 1 1.13 0.014 1.52 -0.01 0.00 -1.08 4.07 0.61
32 Apparecchi radio, tv, e 3 0 1 -0.46 0.040 1.87 -0.04 0.00 -0.14 2.17 0.44
32 Artículos de esparcimie 3 0 1 0.02 0.024 1.57 -0.04 0.00 -0.21 4.52 0.66
32 Radios, televiseurs, ar 3 0 1 0.02 0.036 1.52 -0.02 0.00 -0.69 4.13 0.57

The one and only runaway sector in the U.S. is TV, radio, audio, musical instruments, and computers
(32). The enormous growth is, of course, in the computer component. We have not used the official
“computer deflator” which would have made it grow even faster, but have left computers undeflated.

147

It is not clear to me whether or not computers are in this category in Europe. They probably are,
because the category’s share in total spending is considerably smaller here than in Europe. Even so,
the income elasticity in the U.S. 1.5, the same as in Spain and France, and below Italy’s 1.9. The key
to the super fast growth is the relatively strong price elasticity, -1.1, coupled with the rapid decline of
the relative price of these products.

33. Books, magazines and newspapers
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
33 Books & maps, Magazines 0 0 1 0.01 0.009 0.56 -0.05 0.01 -0.17 4.24 0.59
33 Libri, giornali e perio 0 0 1 0.01 0.017 0.73 0.61 0.00 -0.09 3.51 0.64
33 Libros, periódicos y re 0 0 1 0.06 0.017 0.60 -0.15 0.39 -0.08 2.56 0.64
33 Livres quotidiens et pe 0 0 1 0.04 0.015 0.54 0.13 0.00 -0.15 2.92 0.70

Despite the onslaught of electronic information and entertainment, Books, magazines, and
newspapers (33) have hung on to their absolute level of sales, though they have been losing share in
the consumer’s dollar, as appears from the modest income elasticities of .6 or .7, the highest being in
Italy, which, with Spain, has the highest share of the consumer’s budget, almost twice that in the
USA.

34. Education
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
34 Education 0 0 1 0.04 0.022 0.92 -0.02 0.00 -0.20 2.86 0.84
34 Libri per l'istruzione 0 0 1 -0.03 0.008 1.49 0.05 0.01 -0.05 6.22 0.85
34 Enseñanza 0 0 1 0.01 0.008 0.67 -1.68 -0.72 -0.04 4.82 0.66
34 Enseignement 0 0 1 -0.01 0.004 0.37 1.17 2.16 -0.10 16.51 0.77

Lest that dismal comparison leaves you a bit embarrassed to be American, take heart from Education
(34), for which the American budget share is nearly three times that of the European. Alas, however,
the difference is much affected by accounting conventions. In the U.S., all of the endowment
income of schools and colleges counts as consumption expenditures on education. The income
elasticity in the USA is .9, .7 in Spain, and a paltry .4 in France, where the budget share is less than a
fifth of that here. The French expect the state to cover all the costs of education.

35. Recreational services
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
35 Recreational services 0 0 1 0.07 0.031 1.84 -0.64 0.00 -0.22 2.49 0.71
35 Spettacoli, serv. ricre 0 0 1 -0.02 0.023 1.05 -0.88 0.00 -0.06 3.13 0.73
35 Servicios de esparcimie 0 0 1 -0.03 0.019 0.67 -0.43 -1.01 0.00 2.36 0.66
35 Serv. de loisir, specta 0 0 1 0.08 0.019 1.08 0.03 0.00 -0.18 2.46 0.77

Recreational services (35), which includes spectator sports, have been a growth industry everywhere
except in Spain. The U.S. leads with an income elasticity of 1.8, and a budget share of 3.1 percent.
Italy and France also have elasticities above 1 and budget shares of 2.3 and 1.9 percent respectively.
In Spain, however, the income elasticity was only .7 and there was a negative time trend of a percent

148

per year. My suspicion is that the great national spectator sport of bull fighting is to some extent
losing its hold on the imagination of young, urban Spaniards.

36. Personal care articles and services
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
36 Personal care 0 0 1 0.28 0.015 0.72 -0.04 0.00 -0.43 3.93 0.82
36 Beni e servizi igiene p 0 0 1 0.04 0.030 1.21 -0.59 0.00 -0.11 6.07 0.91
36 Cuidados y efectos pers 0 0 1 0.00 0.014 0.76 -0.98 0.88 -0.03 2.80 0.37
36 Soins personnels, art. 0 0 1 -0.01 0.015 1.38 0.05 0.00 -0.10 4.30 0.83

Personal care articles and services (36), which includes everything from tooth paste to hair salons,
has been a growth industry in Europe, with income elasticities of 1.4 in France and 1.2 in Italy, in
contrast to .7 in America. The Spanish equation used its greater freedom to use a trend term to find
almost exactly the American income elasticity but add to it a time trend of .9 percent per year.

37. Hotels and restaurants
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
37 Hotels & motels, restau 0 0 1 0.07 0.053 0.90 -0.03 0.00 -0.22 2.53 0.63
37 Spese alberghi e pubbl. 0 0 1 0.09 0.095 1.03 -0.25 0.00 -0.15 1.47 0.37
37 Restaurantes cafés y ho 0 0 1 0.08 0.013 0.88 -1.14 0.59 -0.11 3.32 0.43
37 Hotels, cafés, restaur. 0 0 1 0.10 0.065 0.82 0.00 0.00 -0.20 1.95 0.51

The Hotels and restaurant (37) business enjoys fairly good income elasticities (.8 to 1.0) in all four
countries.

38. Other goods
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
38 Other goods 0 0 1 0.08 0.031 1.54 -0.02 0.00 -0.23 3.43 0.54
38 Altri beni 0 0 1 0.72 0.031 1.83 -0.25 0.00 -0.75 3.94 0.62
38 Otros artículos n.c.o.p 0 0 1 0.04 0.153 1.34 -0.30 0.19 -0.05 8.11 0.92
38 Autres articles 0 0 1 0.34 0.016 0.11 -2.44 0.00 -0.43 9.51 0.63

The Other goods category (38) seems to be totally non-comparable across countries. Just the fact
that it accounts for 15 percent of the Spanish budget and 1.6 percent of the French budget indicates
that the contents of the sector must be quite different.

39. Financial services and insurance
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
39 Financial services and 0 0 1 0.05 0.039 1.60 -0.53 0.00 -0.20 2.57 0.67
39 Serv. finanz. e assicur 0 0 1 1.04 0.005 1.76 -0.69 0.18 -1.10 11.54 0.87
39 Servicios financieros n 0 0 1 0.12 0.002 1.72 -0.82 -4.83 -0.15 19.92 0.85
39 Services financiers n.d 0 0 1 0.10 0.007 3.67 0.06 0.09 -0.21 9.28 0.54

Financial services and insurance (39) has been a major growth industry in France and Italy, where it
found income elasticities of 3.7 and 1.8, respectively. What looks like a change of definition has

149

dominated the Spanish series. In America, this is a much more mature industry with roughly ten
times the budget share it carries in Europe. (The services rendered without payment by financial
intermediaries are not included here.)

40. Other services
nsec title G S I lamb share IncEl DInc time% PrEl Err% rho
40 Other services 0 0 1 0.07 0.064 1.27 -0.03 0.00 -0.22 2.87 0.61
40 Altri servizi 0 0 1 -0.07 0.008 1.16 -1.06 0.02 -0.01 7.90 0.88
40 Otros servicios n.c.o.p 0 0 1 0.10 0.033 0.55 -0.07 2.23 -0.12 3.61 0.76
40 Autres services n.d.a 0 0 1 0.07 0.022 0.88 -0.06 0.00 -0.18 2.86 0.75

Other services (40) are also much more important in the US than in Europe, but continue to have a
higher elasticity here (1.3) than in France (.9) or Spain (.5). The Italian elasticity is high (1.2) but on
a very small base, only 0.8 percent of the budget.

It would be safe and politic to conclude that this comparison has shown that the new functional form
is capable of representing a variety of behavior, including significant substitution and
complementarity. While that is, from a technical point of view, the most important conclusion, I
cannot pass up the temptation to try to picture the national characters as they appear from these
estimates. This venture is especially dangerous since citizens of all the four countries may be
readers. Please take no personal offense.

The American has enough if not too much to eat, has become diet conscious and is cutting down on
cholesterol but is, sad to say, bothering less and less to prepare fresh fruits and vegetables. He would
like to eat more fish but is very sensitive to its price. He has no particular interest in more alcohol;
soft drinks are sort of a necessity, not a special treat, and smoking is just a way to make yourself into
a social outcast. Ms. America is very concerned about how she and her family are dressed. Housing
and furnishing and equipment for the house are important, but using more energy for running the
home is a matter of no interest. More domestic help for the working woman is becoming important
again. The nation has gone bonkers over home computers. Every child of any age must have one.
Books? Well, of course, a few books. But sports, concerts, plays, skiing, sailing, any kind of
recreation, that’s what America is all about. Relative to the Europeans, the American is not starved
for medical care, and growth in this area has been less here than there. Automobiles are important
but not much of a class symbol; operating them is just a necessity. Private education and tuition at
public universities is a serious matter. Use of communication has grown because of the declines in
its price. Public transport is to be avoided.

The Italian is outstanding among Europeans for dressing well. He is proud of his country’s cucina,
and would gladly eat more cheese, fish, and, above all, soft drinks; but he is losing interest in vino.
Of pasta, he has, thank you, enough. Eating out at a good trattoria, ah, that’s worth the price. He
continues to puff away on his cigarette just to show his defiance of statistics. In an energy-poor
country, he wants more electricity and fuel. Signora is concerned not only with dressing the family
well but is especially concerned to have a well-furnished house, refined furniture, attractive carpets
and linens, and a bit of style and elegance in china and crystal. She wants appliances to help her
with the house work. But most of all she wants domestic help. Dispensing with domestic servants
was a modern idea that never crossed her sensible mind. The family has been upgrading its car,

150

especially because prices have been coming down relative to other goods. The modest motor scooter
is giving way to the even noisier motorcycle. But public transport is still a respectable way to get
around. Especially if you have a portable telephone -- and who doesn’t? Yes, computers and audio
equipment have caught on fast, just not to the mania level of the Americans. Reading the newspaper
is very important, and books still hold more allure than in any of the other three countries. One
might suppose that just watching Italian politics would provide spettacoli enough, but no, recreation
is high on the list of priorities. Socialized medicine led to explosive growth of spending on medicine
but not on doctors, and certainly not on hospitals.

The Spanish are the newly rich of Europe. And the riches come after a period of declining income in
the early 1980's. They have increased meat consumption in the last five years. Eating out is great,
but please, no more fish! And less potatoes and wine. But an extra cigarette, por favor. Clothing is
a good thing to economize on, as are shoes, though, of course, as income goes up you should look
just a little better. Pretty much the same goes for furniture, rugs, and linens. China and glassware
are an especially good place to economize when your income rises. One good place to put some of
the savings on these goods is into more and better appliances along with the electricity to run them.
Indeed, electricity is showing such a growth that one becomes suspicious that air conditioning might
be catching on. But top priority for these savings is the car. No other of our countries is close to the
Spanish income elasticity for cars. And if you have bought the car, then you have to drive it. But
the new high-speed rail lines are making public transportation competitive again. Right behind the
car in priority comes “recreational equipment” which seems to correspond to home electronics,
including possibly the computer. Never mind, however, about those recreational services that
everybody else is so crazy about. Just living in Spain is recreation enough. As in all three European
countries, medical expenditures have skyrocketed: medicines, therapeutic devices, and services of
doctors. Even hospital services have seen some rise.

Now the French seem utterly indifferent to improving, when income rises, how they are dressed or to
how their house is furnished or to what sort of china or glassware they use, but not to what they eat
and drink. Increase the French family’s income by one percent, and it will spend .8 percent more on
dining out, .5 percent more on meat, 1.6 percent more on fish and those delicious shellfish, .8
percent more on cheese, 1.8 percent more on candy and “other” prepared foods, 1.8 percent more on
soft drinks, including, of course, mineral water, and even a bit more, .2 percent, on wine. If the
French don’t uphold their reputation as the fashion center of Europe, they are certainly les
gourmands of the continent. It must be added that they are cutting back sharply on sugar and
potatoes. Alone among the four countries, they are increasing their use of tobacco. They attach less
priority to buying household appliances than to increasing meat consumption. A pleasant effect of
that indifference is that energy consumption has remained stable. They have relatively little interest
in new cars, relative, that is, to their neighbors in Spain and Italy, and expenditures on operating the
cars are correspondingly stable. Public transport is more income elastic than is operation of cars.
Besides their interest in food, they spend added income on personal care, on home electronics and
recreational equipment, on cultural and sporting events, on financial services, and on
communications. As in the other European countries, the large shares of increased income have
gone to -- or come in the form of -- medicines, therapeutic devices, and services of doctors.

Well, it seems we are not all the same. There do appear to be national differences that go beyond
language. For the present purposes, however, the important point is that this new functional form
seems to be able to work well in what turns out to be a surprising variety of situations. Perhaps it is

151

adequate.

References

Almon, C. (1979) “A system of consumption functions and its estimation for Belgium,” Southern
Economic Journal, vol. 46, No. 1, July, pp. 85-106.

Chao, Chang-yu I. (1991) A Cross-sectional and Time-series Analysis of Household Consumption
and a Forecast of Personal Consumption Expenditures. Ph.D. Thesis, University of
Maryland.

Deaton, A. and Muellbauer, J. (1980) “An almost ideal demand system,” American Economic
Review, vol. 70, No. 3, June, pp. 312-326.

Gauyacq, Daniel (1985) Les systemes interdependants de fonctions de consommation, Prevision et
Analyse Economique, Cahiers du Gamma, vol. 6, No. 2, June 1985 (entire issue).

152

Appendix A. Use of the Estimation Program

The Interdyme system has a module, PADS.CPP, for calculation of simulations with the PADS
system. Several versions of PADS are offered, and the user should look at the comments in the
program to see which is the appropriate version. The estimation program, known as Symcon,
produces output compatible with input requirements of this module. Symcon has two control input
files, GROUPS.TTL and SOFTCON.DAT, and several data matrices, CONSUM.DAT,
PRICES.DAT, CSTAR.DAT, POPUL.DAT, and TIME.DAT.

The GROUPS.TTL file, as the name suggests, defines the groups. It also specifies which categories
are sensitive and which insensitive to price, which weighted population, which income variable, and
which trend variable is to be used by each category. This file for the Spanish study is shown in the
box below. Its first column consist of simply the integers from 1 to n, the number of categories of
consumption. The second column carries the number of the group in which the category falls, or a
zero if it is not assigned to a group, and the third column carries the number of the subgroup to
which the category belongs or a zero if it belongs to none. The fourth is the number of the weighted
population to be used for the item, the fifth is the number of the "income" (or Cstar) series to be
used, the sixth is the number of the "trend" series to be used, and the seventh is a 1 if the category is
a regular, price-sensitive commodity or a 0 if it is not. Although conceptually we have thought of
neatly defined groups and subgroups strictly within the groups, the computer program makes no
effort to enforce this tidy structure. It is possible to form "subgroups" with categories drawn from
more than one group.

The second major control file is SOFTCON.DAT, which gives soft constraints for the various
equations. It is, in fact, hardly to be expected that all parameters would come out with reasonable
values when so many of the variables have similar trends. Thus the use of soft constraints on the
coefficients is an integral part of the estimation process. The estimation program allows the user to
specify the desired value of any parameter except the constant term and to specify a "trade-off
parameter" to express the user's trade-off between closeness of fit and conformity with desired
values of the parameters. In these studies, I began with constraints saying that I wanted the time
trends to be close to zero. I then worked on the income elasticities to get them all positive; for some
products, that meant relaxing the soft constraint on the time trend. Then I added soft constraints to
make the own price elasticities all negative. Finally, some of the coefficients on the change in
income had to be constrained to keep them from being more negative that the income term is
positive.

The SOFTCON.DAT file for Spain is shown in a box below. For each product, there can be
specified desired values of the income elasticity, the change in income in elasticity units, the time
trend as a percent of the base year (1988) value, lambda, and the mu and nu of the group and
subgroup. The table shows for each of these a pair of numbers, the desired value and the trade-off
parameter. If the trade-off parameter is 0, the desired value has no effect on the estimation. The
higher the parameter, the stronger the constraint relative to the data. A value of 1.0 for the trade-off
parameter gives about equal weight to the constraint and to the data. Constraints on mu and nu
values can be specified on the line for any member of the group or subgroup, but I have always
placed them on the line of the first item in the group or subgroup. This table is, in fact, precisely the
way the constraints are entered into the program; the table shows the contents of the file
SOFTCON.DAT, which is read by the estimation program.

153

The GROUPS.TTL File for Spain
éúóíñ

154

Groups.ttl. Columns are
1 The consumption category number
2 The group number
3 The subgroup number
4 Which weighted population number to be used with this category
5 Which Income (Cstar) variable
6 Which Trend variable
7 Use price terms (1 = yes, 0 = no)
8 The title of the category
 1 1 0 1 1 1 1 Pan y cereales
 2 1 1 1 1 1 1 Carne
 3 1 1 1 1 1 1 Pescado
 4 1 1 1 1 1 1 Leche, queso y huevos
 5 1 0 1 1 1 1 Aceites y grasas
 6 1 0 1 1 1 1 Frutas y verduras
 7 1 0 1 1 1 1 Patatas y tubérculos
 8 0 0 1 1 1 0 Azúcar
 9 1 0 1 1 1 1 Café té y cacao
10 1 0 1 1 1 1 Otros alimentos
11 1 0 1 1 1 1 Bebidas no alcohólicas
12 1 0 1 1 1 1 Bebidas alcohólicas
13 0 0 1 1 1 1 Tabacos
14 2 0 1 1 1 1 Vestido
15 2 0 1 1 1 1 Calzado
16 0 0 1 1 1 1 Alquileres y agua
17 0 0 1 1 1 1 Calefacción y alumbrado
18 3 0 1 1 1 1 Muebles
19 3 0 1 1 1 1 Artículos textiles
20 3 0 1 1 1 1 Electrodomésticos
21 3 0 1 1 1 1 Utensilios domésticos
22 3 0 1 1 1 1 Mantenimiento
23 3 0 1 1 1 1 Servicio doméstico
24 4 0 1 1 1 0 Medicamentos
25 4 0 1 1 1 0 Aparatos terapéuticos
26 4 0 1 1 1 0 Servicios médicos
27 4 0 1 1 1 0 Atención hospitalaria y seguro médico privado
28 5 2 1 1 1 1 Compra de vehículos
29 5 2 1 1 1 1 Gasto de uso de vehículos
30 5 0 1 1 1 1 Servicios de transporte
31 0 0 1 1 1 1 Comunicaciones
32 3 0 1 1 1 1 Artículos de esparcimiento
33 0 0 1 1 1 1 Libros, periódicos y revistas
34 0 0 1 1 1 1 Enseñanza
35 0 0 1 1 1 1 Servicios de esparcimiento
36 0 0 1 1 1 1 Cuidados y efectos personales
37 0 0 1 1 1 1 Restaurantes cafés y hoteles
38 0 0 1 1 1 1 Otros artículos n.c.o.p.
39 0 0 1 1 1 1 Servicios financieros n.c.o.p.
40 0 0 1 1 1 1 Otros servicios n.c.o.p
41 0 0 1 1 1 1 Viajes turísticos todo incluido

The SOFTCON.DAT File for Spain

155

sec Title Income DIncome Time lambda mu nu
1 Pan y cereales 0 0 0 1 0 .5 .2 5. .1 1.
2 Carne 0 0 0 0 0 .5 .2 5. 0 0 .2 1.
3 Pescado 0 0 0 0 0 .5 .2 5.
4 Leche, queso y huevos .1 1. 0 1. 0 1.0 .2 5.
5 Aceites y grasas .1 1. -.04 1. 0 .0 .2 10.
6 Frutas y verduras 0 0 0 0 0 .5 .2 5.
7 Patatas y otros tubérculos .0 1. -.02 1. 0 .5 .2 10.
8 Azúcar .1 1. -.06 1. 0 .5
9 Café, té y cacao .05 1. -.03 1 0 .5 .2 10.
10 Otros alimentos 0 0 0 0 0 .5 .2 10.
11 Bebidas no alcohólicas 0 0 0 0 0 .5 .2 5.
12 Bebidas alcohólicas .05 1. 0 0 0 .5 .2 10.
13 Tabacos 0 0 -.2 1. 0 .5 .2 20.
14 Vestido 0 0 0 0 0 .5 .2 5.
15 Calzado 0 0 0 0 0 .5 .2 5.
16 Alquileres y gasto de agua 0 0 -.05 1. 0 1.
17 Calefacción y alumbrado 0 0 0 0 0 .5 .2 5.
18 Muebles 0 0 0 0 0 1. .2 5. .1 1.
19 Art. textiles para el hogar 0 0 0 0 0 .5 .2 10.
20 Electrodomésticos 0 0 0 0 0 .5 .2 10.
21 Utensilios domésticos .1 1. -.06 1. 0 .5 .2 5.
22 Mantenimiento 0 0 0 0 0 .5 .2 5.
23 Servicio doméstico 0 0 -1.2 1 0 .1 .2 5.
24 Medicamentos 0 0 0 0 0 1.
25 Aparatos terapéuticos 0 0 0 0 0 1.
26 Servicios médicos 0 0 0 0 0 .5
27 Atención hospitalaria y smp 0 0 0 0 0 .5
28 Compra de vehículos 0 0 0 0 0 .5 .2 20. .1 5. -.3 1.
29 Gasto de uso de vehículos 0 0 0 0 0 .5 .2 5.
30 Servicios de transporte 0 0 0 0 0 .5 .2 10.
31 Comunicaciones 0 0 0 0 0 .5 .2 10.
32 Artículos de esparcimiento 0 0 0 0 0 .5 .2 10.
33 Libros, periódicos y revist 0 0 -.1 1. 0 .5 .2 5.
34 Enseñanza 0 0 0 0 0 .5 .2 10.
35 Servicios de esparcimiento 0 0 -.30 1. 0 .5 .2 5.
36 Cuidados y efectos personal 0 0 0 0 0 .5 .2 10.
37 Restaurantes cafés y hotele 0 0 0 0 0 .5 .2 10.
38 Otros artículos n.c.o.p. 0 0 -.40 1. 0 2. .2 10.
39 Serv. financieros n.c.o.p. 0 0 -1.4 1. 0 2.0 .2 5.
40 Otros servicios n.c.o.p 0 0 0 0 0 .5 .2 5.
41 Viajes turís. todo incluido 1.0 1. 0 0 0 .5 .2 5.

The CONSUM.DAT file begins with some dimensions and dates and then contains the data on
consumption in almost exactly the form in which it would be written by the G7 command “matty”.
The layout is shown in the above box for the Spanish case; the “...” show where material has been
cut out of the file to make it fit on the page. Notice the four numbers with which it begins. Each
should be on its own line. Then come the data, with 20 series at a time across the "page".
Comments may be introduced in the data by beginning the line with a #.

The CONSUM.DAT File for Spain

Exactly the same format is followed for the PRICES.DAT file, which give the price indexes, except
that the four numbers at the top are omitted. The CSTAR.DAT file, which gives the income series,
begins with the number of such series. It then has these series arranged in columns. It has one extra
year of data at the beginning so that the first difference of income can be calculated. The
POPUL.DAT file is very similar; it begins with an integer giving the number of populations,
followed by data in the same format. It also has the extra year at the beginning. Finally the
TEMPI.DAT file gives various series which may be used as the time trend. Like the POPUL.DAT
file, it has the number of series at the beginning but does not have the extra year of data at the
beginning.

Once the files GROUPS.TTL, CONSUM.DAT, PRICES.DAT, CSTAR.DAT, TEMPI.DAT, and
SOFTCON.DAT are ready, the program is run by the command "symcon [n]" from the DOS prompt.
The optional parameter, n, is the number of iterations to be run before turning over control to the
user. Thus Symcon will run only 1 iteration and then give the user the option of quitting (by tapping
'y') or continuing the Marquardt process another iteration. If the command given is "symcon 40",

156

42 Sectors
24 years of data
1971 First year
1986 Base year
Consumption, constant 1986 prices, total (not percapita)
Date kcpi1 kcpi2 kcpi3 kcpi4 ... kcpi20
70.000 499.340 1021.118 549.566 467.982 ... 164.161
71.000 490.641 1022.712 571.055 466.638 ... 175.657
72.000 506.050 1017.367 574.642 472.211 ... 201.513
73.000 548.905 1182.404 582.436 498.514 ... 210.624
74.000 554.821 1338.080 536.756 562.671 ... 202.528
...
94.000 599.644 1666.945 606.117 735.611 ... 289.384
Date kcpi21 kcpi22 kcpi23 kcpi24 ... kcpi40
70.000 109.692 286.789 184.407 272.749 ... 68.330
71.000 117.373 299.460 188.615 313.366 ... 74.745
72.000 134.650 342.775 189.809 337.034 ... 79.912
73.000 140.738 351.768 187.654 340.828 ... 85.539
74.000 135.328 350.958 180.607 370.052 ... 86.795
...
94.000 121.689 412.728 183.031 780.092 ... 165.796
Date kcpi41 kcpi42
70.000 34.073 298.342
71.000 38.251 334.738
72.000 45.404 395.237
73.000 48.923 425.776
74.000 55.430 479.674
...
94.000 48.288 934.576
The ... indicate where data have been removed to fit the into this box.

then 40 iterations are automatically run without pausing for user input. To check that data have been
read correctly, use "symcon d". (The d is for "debug".)

157

Index

Almost Ideal Demand System...............................127
Bacharach, M...102
Basic...48
Beginner’s Understandable Matrix Package..........123
BUILD.CFG...44
Bump..39
Bureau of Labor Statistics..12
C++...39, 41

break..50
char..62
continue...50
do...50
extern..63
fabs()...53
float...62
for loop..49
Fortran...50
goto...50
if statement..50
int..62
printf()...51
while..50
while loop...52

CALLALL.CPP...47
Compare...26, 30
Compare commands...

\add..26, 27
\center..26, 30
\column...30
\cutoff..26, 30
\dates...26
\matcfg..26
\matlist..26, 30
\noformat...26
\pages..26
\row...26, 30
\title...26
&...26

Computable general equilibrium models...............109
Consumption functions..71
detached-coefficient...71
double deflation..4
DYME.EXE...55
Dynamic fixes..91
Engel curve...129
Equation fix..91
Euclidean length...34
Eurostat...109

EXOGALL.REG..44, 55
Exogenous variables..56, 58
Final demand..1, 3, 5, 6
Fix types...

cta..90, 97
dgro...91, 97
dind...91, 96
dstp..91, 97
eqn...91, 98
fol..93, 98
gro...89, 97
ind...89, 96
mul..90, 97
ovr...89, 96
rho...90
shr..93, 98
skip..90
stp..89, 97

fix vector in VAM file..95
Fixer...57, 95
Fixer commands...

group...96
FIXER.CFG...59
Fixes...88
fixval...92
Fortran..39
Fundamental Theorem...5
G bank..15
G.CFG..15, 55
G7 commands...

add...19
bank...94
coef..21
con...41
data..15
dfreq..22
dos...86
dvam..17
f...15
fadd...24
fdates...22, 86
fex...15
gname..25
gr...24
hrange..81
index..22
ipch..71
Leontief inverse..22

158

lint...32, 86
linv..23
lis...94
madd..26
matin...17
mcopy..21
mgr..81
minv..26
mmult..26
Model 5...86
mtrans..26
punch...71
r...24
show..21
subti...25
ti..25
type..24
vam..17
vamcreate..17
vc...21, 23
vmatdat..17

G7 functions...
@cum()...23
@exp()..23
@sin()...23

Gauss-Jordan reduction..39
Gaussian reduction...136
GLOBAL..62
groups...95, 96
Groups and subgroups, PADS................................131
GROUPS.BIN..95
GROUPS.TTL..154
HEART.CPP...46, 55
IdBuild..43
IdBuild commands...

f...44
iadd..44
isvector..71

Import Equations..77
Indirect taxes..108
Industry-technology assumption............................110
Inforum...iii
Input-Output...1
input-output coefficients..5
Interdyme...15, 41
Interdyme classes...

Equation..73
Matrix..53
Tseries...88
Vector..53

Interdyme functions...

BUMP...67
colsum()..66
columns...66
Display()...67
dot()...65
ebemul()..53
First()..66
firstcolumn()...66
firstrow()...66
invert()..66
lastcolumn()..66
lastdata()..84
lastrow()..66
load(t)..51
loop()...70
PSeidel()...67, 87
pulloutcol()...66
pulloutrow()..66
putincol()...66
putinrow()...66
r()...70
ras()...67
resize...64
resize()..70
rhoadj..75
rows()..66
rowsum()...66
Seidel()..52, 53
spin..74
store(t)...51, 52
sum()...66
tserin()...46
uptseries()...46, 51
writemat()..67

Interdyme Programming..62
International Input-Output Association...................13
L-norm..34
LASTDATA...84
Lebesgue, Henri...34
Leontief inverse..5, 33
Leontief, Wassily..3, 12, 101
Linear expenditure system.....................................128
Linear interpolation..86
Logarithmically additive model.............................128
M-norm...34
MacFixer..56, 88
MACFIXER.CFG..59, 88
MACFIXER.CHK ...94
Macro equations ..51
Macro Variable Fixes...88
Margins...1, 107

159

MASTER..44
MATLIST.CFG..30
Matrix Tools in Interdyme.......................................65
Methods of successive approximation.....................33
Missing value...46
Model 1..41
Model 2..67
Model 3..71
Model 4..77
Model 5..85
MODEL.CPP...47, 48, 55, 71
National accounts...8
Neumann series..118
Newton’s method...104
NewUse matrix...116
NIPA...8
No-Negatives Product-Technology Algorithm......114
Norm of a matrix..34
Norm of a vector..34
numeraire6..87
Optimization...57, 87
Output Fixes...99
Perhaps Adequate Demand System (PADS)....71, 127
Personal income...46
Physical units...3, 37
Price calculation...6
Primary product..109
Producer price..1, 107
product-technology assumption.............................109
PSEUDO.SAV..44, 94
Quest model...87
RAS..101
RAS Algorithm...101
Read and Write Flags...83

Real value added..4
recipe matrix...112
Regression Equations...41
Representative consumer.......................................128
Rho-adjustment..74, 75, 90
Root name of a file...56
RUN.GR...46
RUN.XOG..45, 55
Running the Interdyme Model.................................54
Secondary products..109
Seidel iterative process...114
Seidel iterative solution..33
Slutsky symmetry...128, 132
Social Accounting Matrix..10
Stone, Richard..13, 101
Structure of the American Economy................12, 101
Symcon...157
System of National Accounts.............................9, 110
Tiny..1, 16, 41
TINY.ZIP..16
Triangular matrix..33
TSERIES.INC..46
USER.H..62, 71
Value added tax (VAT)...108
VAM file...15, 41
VAM.CFG..16, 17
VAM.GLB..64
VAM.RSZ...64
Vector and Matrix Fixes...95
Zauber...105
 41, 93
.EQN file..73
.SAV files..44
.TTL file...25, 80

160

	CONTENTS
	ACKNOWLEDGEMENTS
	CHAPTER 14. INPUT-OUTPUT IN THE IDEAL CASE
	14.1. Input-Output Flow Tables
	14.2. Input-Output Equations. The Fundamental Theorem.
	14.3. Combining Input-Output and Institutional Accounts
	14.4. A Historical Note

	CHAPTER 15. INPUT-OUTPUT COMPUTATIONS
	15.1. Introduction to Input-Output Computing with Just G7
	15.2. Iterative Solutions of Input-output Equations
	15.3. The Seidel Method and Triangulation

	CHAPTER 16. BUILDING MULTISECTORAL MODELS WITH INTERDYME
	16.1. Introduction to Interdyme
	Regression Equations and Accounting Identities
	IdBuild, the Interdyme Version of the Build Program
	Writing MODEL.CPP for Tiny
	Running the Interdyme Model
	More on Interdyme Programming

	16.2. Matrix Tools in Interdyme
	16.3. Vector Elements in Regression Equations
	16.4. Systems of Detached-Coefficient Equations
	16.5. Import Equations
	16.6. Speeding Up Solutions with Read and Write Flags
	16.7. Changing Input-Output Coefficients and Prices
	16.8. Fixes in Interdyme
	Macro Variable Fixes
	Vector and Matrix Fixes
	Output Fixes

	CHAPTER 17. MATRIX BALANCING AND UPDATING
	17.1. The RAS Algorithm
	17.2. Convergence of the Algorithm
	17.3. Preliminary Adjustments Before RAS

	CHAPTER 18. TRADE AND TRANSPORTATION MARGINS AND INDIRECT TAXES
	18.1. Trade and Transportation Margins
	18.2. Indirect Taxes, Especially Value Added Taxes

	CHAPTER 19. MAKING PRODUCT TO PRODUCT TABLES
	19.1. The Problem
	19.2. An Example
	19.3. The No-Negatives Product-Technology Algorithm
	19.4. When Is It Appropriate to Use This Algorithm?
	19.5. A Brief History of the Negatives Problem
	19.6. Application to the U.S.A Tables for 1992
	19.7. The Computer Program

	CHAPTER 20. A PERHAPS ADEQUATE DEMAND SYSTEM
	20.1. Problems and Lessons of the AIDS Form
	20.2. Slutsky Symmetry and Market Demand Functions
	20.3. A Perhaps Adequate Form
	20.4. The Mathematics of Estimation
	20.5. Comparative Estimation for France, Italy, Spain, and the USA
	Appendix A. Use of the Estimation Program

