16th International INFORUM Conference, European University of Lefke, North Cyprus Kyrenia, August 31 – September 7 2008

Product Tax Modelling in INFORGE

by

Anke Mönnig

Gesellschaft für Wirtschaftliche Strukturforschung (Institute of Economic Structures Research)

Heinrichstr. 30 ° D – 49080 Osnabrück

Tel.: + 49 (541) 40933-0 ° Fax: + 49 (541) 40933-11

Email: moennig @gws-os.de ° Internet: www.gws-os.de

TABLE OF CONTENTS

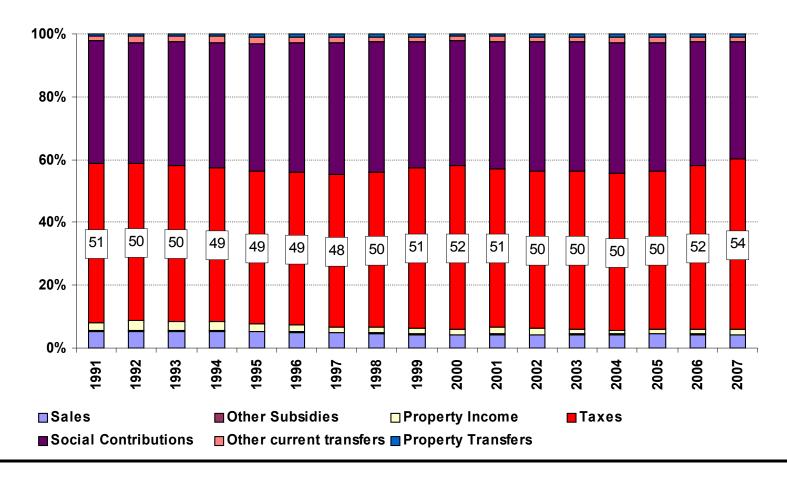
1. Introduction

2. Taxes on Products

3. Modelling Taxes on Products in INFORGE

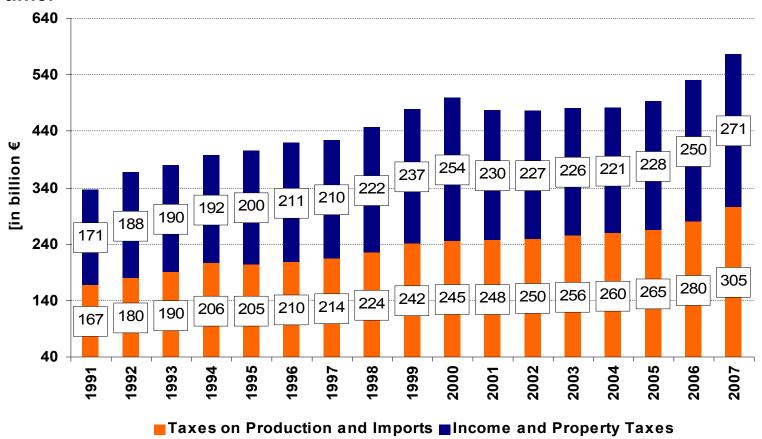
4. A Simulation on Product Taxes

5. Conclusions

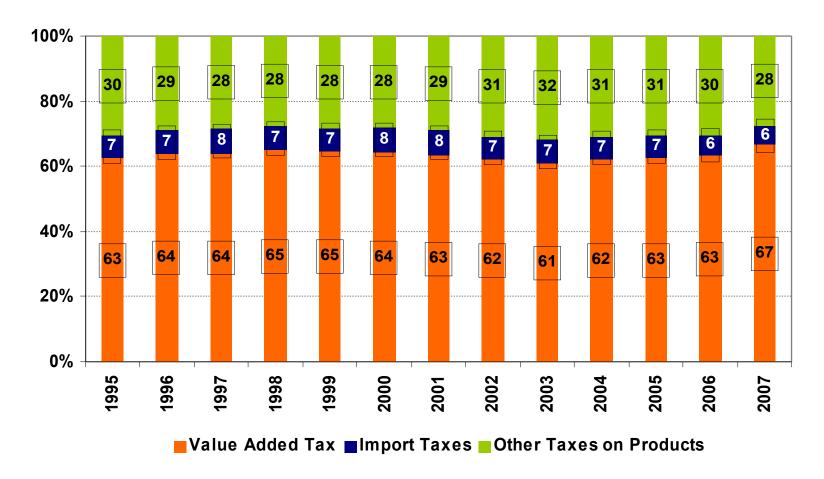


1 Introduction

- Product Tax Modelling is important for the following reasons:
 - Increasing role of Fiscal Policy
 - Taxes are major source of state income
 - Product Taxes (value added taxes, import taxes, excise duties) have distorting effects on purchasers' prices
 - Effect on consumed volume
 - Effect on structure of consumption
- A differentiated and detailed approach to product tax modelling is favourable



- One important issue of fiscal policy is tax policy
- Taxes are the most important component of total state income

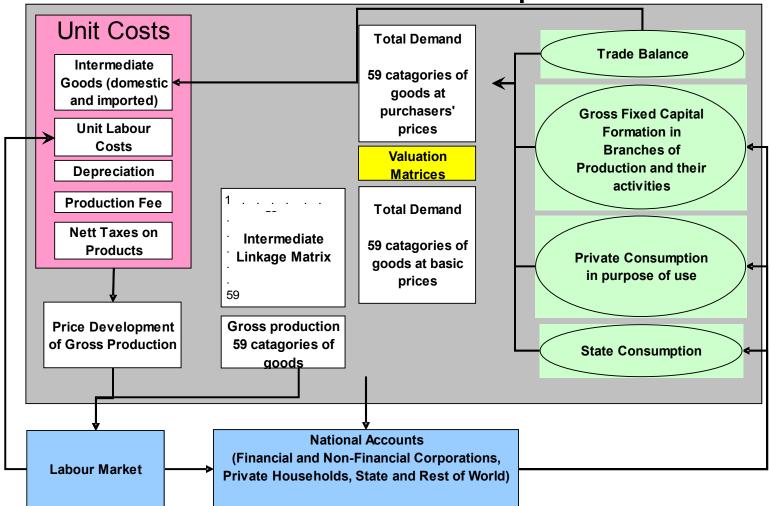


- **♦** Taxes can be split in direct (income) and indirect (consumption) taxes
- On average, taxes on production and imports increased by 3.2% p.a. from 2000 to 2007. Income and property taxes increased by 0.9% p.a. in the same time.

Indirect taxes can be split in three categories: value added taxes, import taxes and other taxes on products

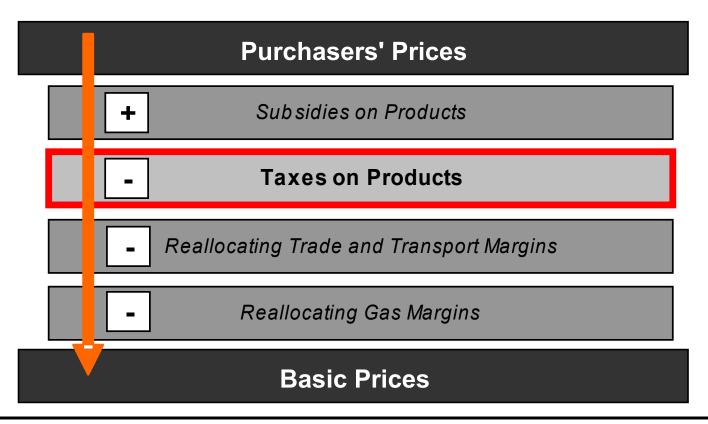
Taxes on Products can be categorized into general and specific consumption taxes:

General consumption taxes


- ⇒ E.g. value added taxes
- Levied on the turnover of all consumed products
- ⇒ Tax rate and tax base are equal for all products
- Product price changes have consequences on tax revenue

Specific consumption taxes

- ⇒ E.g. excise duties
- Levied on the consumed quantity of a certain product
- Tax rate and tax base vary according to the taxed object
- ⇒ Product price changes have no direct consequences on tax revenue

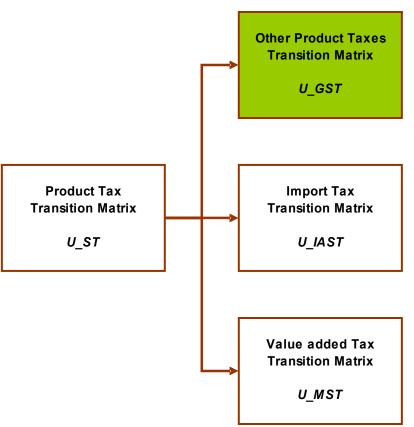


INFORGE and the location of taxes on products

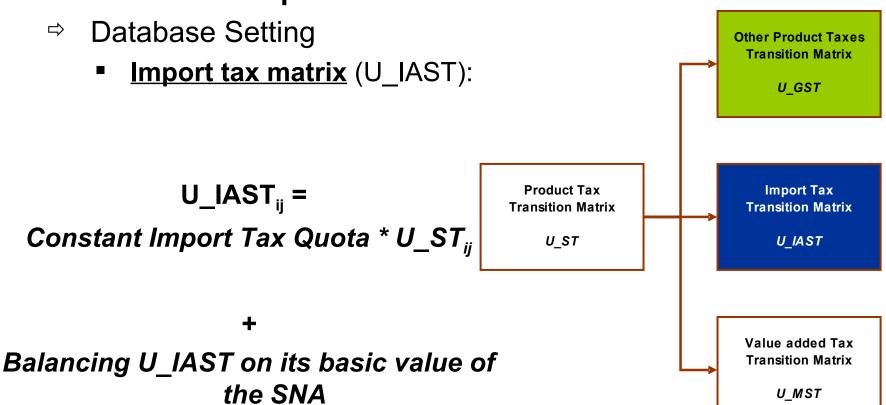
- In INFORGE, taxes on products are located at the transition point of total demand at purchasers' prices and total demand at basic prices.
- Valuation matrices guarantee the correct transformation from purchasers' to basic prices.

- Each valuation matrix has exactly the same configuration.
- ♦ The valuation matrix of taxes on products shows the tax revenue for each i=59 categories of goods and for each of the j=8 components of total demand.

		1	2	3	4	5	6	7	8	9	10
	product tax revenue (U_ST) 2004, in million Euro	Intermediate Demand	Private Con sumption	Consumption of non-profit Organization	State Consumption	Fixed Capital Formation	Con- struction	Changes in Inventory	Export	Final Demand	Total Demand
1	Agriculture, Hunting and related activities	1481	1559	0	0	0	406	0	0	1965	3446
2	Forestry, logging and related service activites	2	45	0	0	0	0	0	0	45	47
3	Fishing	2	22	0	0	0	0	0	0	22	24
4	Mining of coal and lignite;extraction of peat	3	5 5	0	0	0	0	0	0	55	58
5	Extraction of crude petroleum and gas	2969	3460	0	12	0	0	0	0	3472	6441
6	Mining of uranium and thorium ores	0	0	0	0	0	0	0	0	0	0
7	Mining of ores	0	0	0	0	0	0	0	0	0	0
8	Mining and quarrying of stones and earthes	47	17	0	0	0	0	0	0	17	64
9	Manufacture of food products	579	8016	0	16	0	0	0	0	8032	8611
10	Beverages	932	6696	0	27	0	0	0	0	6723	7655
11	Manufacture of tobacco products	226	16526	0	0	0	0	0	0	16526	16752
12					•••		•••				


The technical implementation

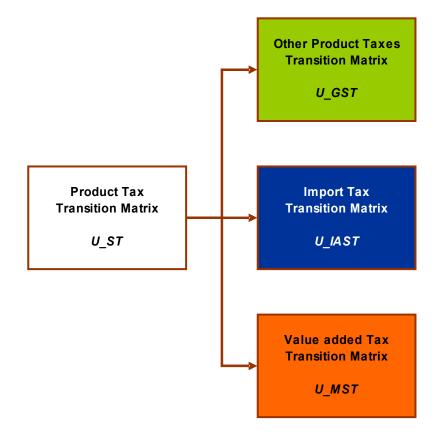
- □ Database Setting
 - The setting of the database requires the unbundling of the historical given total product tax matrix (U_ST)
 - The process consists of three steps, beginning with <u>other product taxes</u> (U_GST):


$$U_GST_{ij} = U_ST_{ij} / U_ST_{i10} * gsta_i$$

+
Balancing U_GST on its basic value

of the SNA

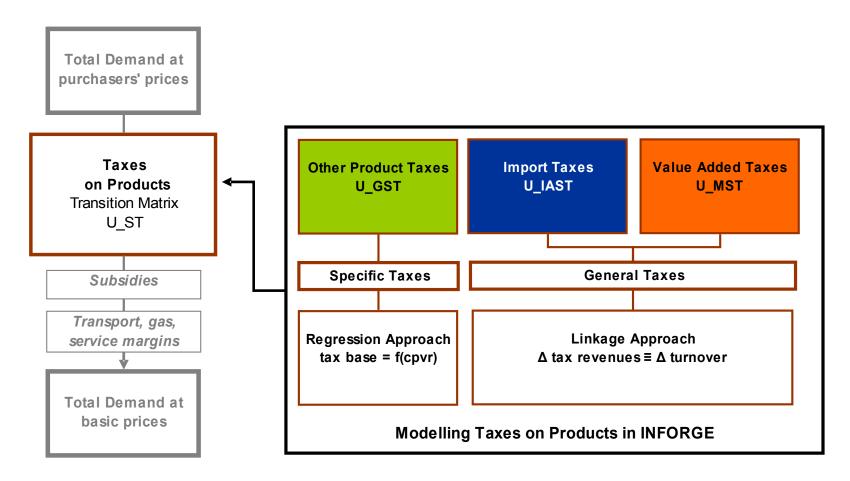
The technical implementation



The technical implementation

- Database Setting
 - Value added tax matrix (U_MST):

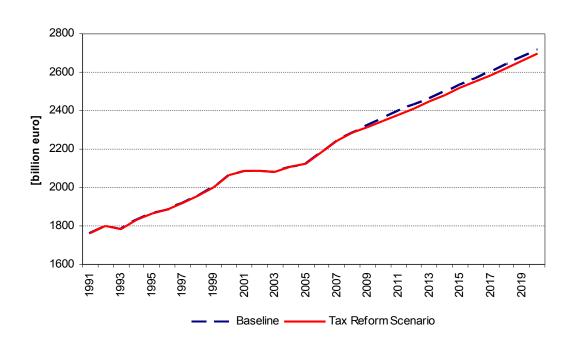
$$U_MST_{ij} = U_ST_{ij} - U_IAST_{ij}$$



Modelling Taxes on Products

- The Method of modelling taxes on products depend on the tax type
 - Specific product taxes: Other product taxes
 - General product taxes: Import taxes and value added taxes

Modelling Taxes on Products



4 Simulation on Product Taxes

Running a Simulation

⇒ It is assumed that the national government in Germany decides on the abolition of the reduced value added tax rate (7%) in 2009. From that time on, a uniform value added tax rate of 13% is set

⇒ Overall result:

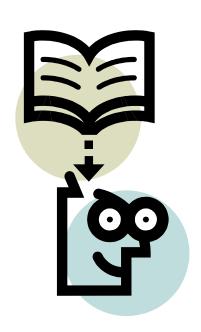
4 Simulation on Product Taxes

Running a Simulation

- ⇒ Short-term results:
 - Increase in consumer prices
 - Immediate decline in all components of final demand
 - Immediate increase in product tax revenues
- ⇒ Medium-term results:
 - Unemployment increases
 - Pressure on social security system
 - Further increase in prices
 - Total demand decreases further
- Long-term results:
 - Consolidation of state budget
 - Cumulating effects slow down

5 Conclusion

- Empirical modelling helps to analyse FP shocks
- Their effects on the output and structure of the economy can be interpreted.


Possible soft spots:

- Unbundling of taxes on products are subject to certain assumptions (e.g. constant import tax quota)
- Specific consumption taxes are more complex in reality (e.g. different tax rates for cigarettes or shag)
- Data restriction leads to an insufficient endowment in official data.
- With a more sophisticate historical dataset, the modelling of taxes on products could be improved.

Thank you for your attention

Any Questions? Any Comments?

