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Introduction

Fixes for elements of vectors or for predefined groups of sectors in a vector are now
conveniently imposed within an Interdyme model, using the Fixer program, in
conjunction with an input file such as VECFIX.VFX, that defines the groups and the
fixes.  However, the fixing of total imports, or of groups of sectors of imports can cause
trouble if we try to use simple right-directional scaling.  Half of the problem is that
imports can only meaningfully be used to satisfy some component of domestic demand,
either intermediate or final demand.  The other half is that imports of one industry help
determine output for that industry, and therefore also influence domestic demand, and
therefore imports, for many other industries.  In other words, imports and output of all
industries are interdependent.

If the model is forced to take more imports than it has demand for a certain industry, then
output for that industry will be calculated as negative in Seidel().  This unreasonable
result, if not corrected in Seidel(), will then cause other parts of the model to react
strangely.  For a forecast of imports to be reasonable, then imports must be less than or
equal to domestic demand.  How can we scale imports to a control total, yet ensure that
imports satisfy this condition?

A Scaling Rule

A rule is required which alters these ratios in a sensible manner.  We have chosen a fairly
simple rule, in which the largest percentage changes to import/domestic demand ratios are
made to sectors which have relatively low import shares or penetration levels already.
However, the rule does not raise the penetration levels of an industry with a share equal to
zero, since imports will most likely not be demanded for this industry.  The rule can be
expressed by the following formula:

with  determined implicitly by imposing the constraint, or control that:λ

where the  are the initial import shares (before scaling), formed as ,mj0 mj0 = Mj0/Dj

 are the initial imports for each sector, and  is domestic demand for each sector.  Mj0 Dj C

 is the control total to which the imports must sum, and the  are the final import shares.mj

mj = mj0

mj0 + λ(1−mj0)

C = Σ
j

mjDj

Interdyme Report #1 1 May, 1995



Final imports are recalculated as .  If the solution is possible, thenMj = mjDj

.C = Σ
j

Mj

This nonlinear function of  is easily solved by a modified Newton-Raphson algorithm,λ
which will find the zero root of the function:

The relation between the starting value  and the revised value  is shown formj0 mj

various values of  in Figure 1 below.λ

This algorithm can also be (and was originally) applied to the problem of forecasting
coefficient change in an import matrix.  In this context, we may know the row control of  
total imports for a given commodity.  We also have base period import coefficients, that
express intermediate imports as shares of total intermediate for each cell, and final
demand imports as a share of that category of demand.  In this case, the same problem can
be posed as finding the zero root to the function:

f(λ) = C −Σ
j

mj0Dj

mj0 + λ(1−mj0)

Figure 1. Share Revision Functions
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where:  = total intermediate imports for row iYi

 = base year import coefficient for row i, column jmij0

 = intermediate flow in row i, column jxij

and the j index now runs over the categories of final demand as well as the columns of the
input-output matrix, and for the categories of final demand,  refers to thexij

imports/demand ratio for that category.

The imsis() Function

A new function has been written for Interdyme that can handle either one of the above
problems.  It is called imsis(), and its calling signature is:

short imsis(float control, short n, short *group, float *mvec, float
*dd);

The control argument is the control total (C or Y in the above examples) to which
imports must sum.  The pointers mvec and dd point to zero-offset arrays of imports and
domestic demand, or intermediate import flows and total intermediate flows for a row.
Finally, n is the number of items in the vector to be scaled, and group is a list of length n
of the sector indices (position in im or dd plus 1) of the items to be scaled.

This function in turn calls a modified Newton-Raphson algorithm called imnewton(),
which is described briefly in the technical appendix to this report.

How to do Import Fixes in Seidel()

Applying the import fixes properly in the Seidel() routine can be tricky, and our suggested
solution involves compromising between a number of goals. The difficulty is due to the
very reason that imports are calculated in Seidel: imports and output are simultaneous;
and imports should not be greater than demand.

In short, here is how import fixes are done in the Seidel which is provided in the version
2.07 MODEL.CPP file:

1. In the first pass through the Seidel iteration loop, imports (in the "im" vector) are
calculated based on total domestic demand, and output is determined
simultaneously.  For each sector, the Vector fix function is called with the sector
number i as a second argument, indicating that we check for single sector fixes:

im.fix(t,i)
(prototype:  short Vector::fix(short t, short i); )

 If imports are fixed, then output is re-calculated to be consistent with imports.

f(λ) = Yi −Σ
j

mij0xij

mij0 + λ(1−mij0)
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2. After the Gauss-Seidel algorithm has converged for all sectors, the fix routine is
called again, this time with the Vector of domestic demand dd as the second
argument.  The fact that the second argument is a Vector indicates that it is being
asked to do group fixes for imports.

im.fix(t,dd)
(prototype:  short Vector::fix(short t, Vector dd); )

where dd is a measure of domestic demand1.  This version of fix calls imsis() to
perform scaling to the desired aggregate control.  

3. Before calling this fix function, imports were saved into a scratch vector.  After
the fix function completes, the new vector is compared to the scratch vector.  Any
sectors that are different are assumed to have been subject to import group fixes.
A vector of flags is set to 1 in positions where imports have changed, and 0
elsewhere.  Also, a global flag is set to 1 to indicate that some imports have been
subject to group fixes, and if this is true, Seidel returns to the top of the
Gauss-Seidel iteration.

4. On the second pass through the Gauss-Seidel iteration, the imports of sectors that
have been flagged as having been affected by import group fixes are not
calculated, but rather treated as unchangeable.  This is because if they were
allowed to be recalculated themselves, the whole point of calculating the other
sectors after the group fix would be futile. 

5. After the second pass through Seidel, the solution is complete, and the import
group fixes do not need to be applied a second time.

Rho-Adjusting Imports

In the framework of Interdyme, first each vector is calculated with the flag setrho set
to 'n'.  This means that when the Equation.rhoadj () function is called, the rho-adjustment
is applied, but the error for future years is not calculated or updated.  Within the Seidel()
function, imports are rho-adjusted with setrho equal to 'n'.  Single-sector fixes are
applied, and then group fixes are applied.  Imports not affected by group fixes are then
recalculated within the Seidel loop, holding the group-controlled imports constant.
Single-sector import categories are then rho-adjusted and fixed once more.

After the model has converged for a given year, setrho is set to 'y', and a function
called impfunc() is called.  Impfunc calculates imports outside the Seidel function, using
(out+imp) as a measure of domestic demand2.  The Equation.rhoadj() function is called,
which this time calculates the error (if the year is less than or equal to the rhostart year) or

1 Domestic demand is conveniently available in the Seidel iteration, for we have:

sum=fd[i];
for(j = first; j <= last; j++){
sum += A[i][j]*q[j];
}

dd[i] = sum;
2 In many models, domestic demand for imports is calculated as (out+imp-exp).
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updates the error for next year (in all subsequent years).  Note that impfunc also applies
all single-sector fixes and then all group fixes again.

The Output Calculation in Seidel(), With a Simple Import Equation

In the case of a simple import equation, which is a linear function of domestic demand,
we have:

Mi = b1i + b2iDi

In the calculations of Seidel,  is defined asDi

Di = Fi +Σ
j

aij Qj

A variable called sum is being accumulated for use in the solution for output, which is
expressible as:

sum = Fi +Σ
j

aij Qj − aiiQi

Therefore:

Di = sum + aiiQi

Note that we can write the output identity for as:Qi

Qi = Fi + Σ
j≠i

aijQj + aiiQi − Mi

Substituting the expression for  into the equation for , we get:Di Mi

Mi = b1i + b2i(sum + aiiQ )

and then substituting this into the output identity, we get:

Qi = Fi + Σ
j≠i

aijQj + aiiQi − (b1i + b2i(sum + aiiQi ))

Combining terms yields:

(1 − aii + b2iaii)Qi = Fi + Σ
j≠i

aijQj − (b1i + b2isum )

or

Qi =
Fi + Σ

j≠i

aijQj −(b1i +b2isum )

(1 −aii(1−b2i))

This explains the line in Seidel where the output calculation is made for each sector:

out = (sum - imports[j][1] - imports[j][2]*sum - imports.errors[j]) 
/(1.- A[i][i]*(1. -imports[j][2]));
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For years in which imports are not calculated by equation, the code is much simpler:

out = (sum - imp[i])/(1. - A[i][i]);

Sample Seidel() Function with Import Group Fixes

short Seidel(Matrix& A, Vector& q, Vector& imp, Vector& sdc, 
Equation& imports, Vector& f, short *triang, float toler)

{
short i,j,k,first,last,n,iter,im1,imax,retval;
float depend,discrep,dismax,fdismax;
double sum,out;

iter = 0; // Iteration count
n = A.rows();
first = A.firstcolumn();
last =  A.lastcolumn();

if(q.numelm() < A.rows() ){
printf("In Seidel, the solution vector is not large enough.\n"); 
return(ERR);
}

short m = imp.rows();
Vector impsave(m), dd(m), qact(n);
dd.set(0.);
qact = q;
short *impchanged = new short[m+1];
short GroupFixFlag=0;  // Indicates if some imp grp fixes have been applied.

restart:  
// If group fixes on imports, go through again, with no recalculation
//   of fixed sectors.
while(1){  // start Seidel loop.
dismax = 0;
for(k = 0; k < n; k++){
i = triang[k];
sum = f[i];
for(j = first; j <= last; j++){
sum += A[i][j]*q[j];
}

dd[i] = sum;
sum -= A[i][i]*q[i]; // Take off the diagonal element of sum
// Imports Calculation here;
// If we are before the last year of data, or if this sector
//   was affected by an imports group fix, take imp as given.
if(t <= imp.LastDat || (GroupFixFlag && impchanged[i]) ){
out = (sum - imp[i])/(1. - A[i][i]);
}

else {
/* The following formula for output is derived as follows,
with m1 and m2 as the parameters of the import equation.
out = sum + aii*out - imp
out = sum + aii*out -(m1 + m2*(sum + aii*out) + error)
(1 - aii + m2*aii)out = (sum - m1 - m2*sum - error)
*/
j = secimp[i]; // j is the import equation number for sector i
if(j == 0){

imp[i] = 0;
out = sum/(1. - A[i][i]);
}
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else{  // Here is an example imports equation:
out = (sum -imports[j][1] - imports[j][2]*sum - imports.errors[j]) 
/(1.- A[i][i]*(1. -imports[j][2]));
imp[i]=imports[j][1]+imports[j][2]*(sum+A[i][i]*out)+imports.errors[j];
depend = imp[i];
imp.fix(t,i);
if(fabs(imp[i]-depend)>1.0e-7) { // Single-sector fix, recalc out

out = (sum - imp[i])/(1. - A[i][i]);
}

}
}

discrep = fabs(out - q[i]);
if(discrep > dismax){
dismax = discrep;
imax = i;
fdismax = fabs(out);
fdismax = (fabs(fdismax-0.0)<.000001)?0.0:dismax/fdismax;
}

q[i] = out;
arith("Seidel",i);
}

iter++;
if(dismax < toler || fdismax < .000001) break;
if(iter > 25 ){
printf("No convergence in %d iterations. Discrep = %7.2f in sector %d.\n", 
iter, dismax, imax);

retval = ERR;
goto cleanup;
}

}
gotoxy(26,wherey());
cprintf("%d ",iter);
// If import group fixes haven't already been done, do them.
if(!GroupFixFlag) {
impsave = imp;
imp.fix(t,dd);
for(i=1;i<=m;i++) {
if(impsave[i] != imp[i]) {
impchanged[i] = 1;
GroupFixFlag = 1; // indicate there are group fixes.
}

else impchanged[i] = 0;
}

if(GroupFixFlag)
goto restart;

}

retval=OK;
cleanup:
if(impchanged)
delete[] impchanged;

return retval;
}

Code for Import Equation Function impfunc()
/* impfunc() -- the imports functions for Slimdyme */
short impfunc(Vector& im, Vector& out,  Equation& imports)
{
short n,i,j;
float depend;
n = imports.neq;
Vector dd(NSEC);
for(i = 1; i <= n; i++){
j = imports.sec(i);
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depend = (imports[i][1] + imports[i][2]*out[j])/(1.-imports[i][2]);
im[j] = imports.rhoadj(depend,im[j],i);
}

// Redo import single-sector fixes and group fixes:
dd = out + im;
short m = im.numelm();
for(i=1;i<=m;i++)
im.fix(t,i);

im.fix(t,dd); // group fixes.
return(n);
}

Interdyme Report #1 8 May, 1995



Technical Appendix: Modified Newton Method

The function that needs to be solved :

is a function of only one variable, .  Therefore, we use a one-dimensional root-findingλ
routine.  Where a first derivative of the function is easily expressed, the Newton method,
also known as the Newton-Raphson method, is the most efficient.  Geometrically, this
method consists of extending a tangent line at a current point , until it crosses the zeroλ i

axis, and then setting the next guess to the function value of that zero-crossing (seeλ i+1

Figure A-1).

In this example, the first guess for , say , finds the function at point A.  From here theλ λ 0

tangent is drawn to the axis, to the next guess, , with  at point B.  From hereλ 1 f(λ 1)
another tangent is drawn to the axis, to , with at C.  The process continues untilλ 2 f(λ 2)
the difference between each successive  is less than some small tolerance, or untilλ

.f(λ) = 0

While the convergence of the Newton algorithm is fast, its global convergence properties
are poor.  For this reason, we use a more fail-safe routine which uses a bisection
technique to home in on the root whever the Newton algorithm would diverge, or
whenever Newton is not reducing the size of the brackets rapidly enough.  

f(λ) = C −Σ
j

mj0Dj

mj0 + λ(1−mj0)
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Figure A-1 - Illustration of Newton's Method
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The code that implements the Newton method is in the file IDFIXES.CPP, and the
function is imnewton().  This function is, in turn, called by imsis(), which is also found in
IDFIXES.CPP.  

Sometimes, when using the import fixer, you may get a message that starts with the
phrase: "Root is not bracketed in newton!"  Some rather long text follows, which explains
that the newton routine didn't converge, either because the maximum number of iterations
was exceeded, or that getting the control to be satisfied would be impossible without
some import shares being outside the range (0,1).  In this case, you should check the fix
with the domestic demands for the affected industries.  For example, in the U.S., the
imports to domestic demand ratio is already rather large for Shoes and for Radio and TV.
If you tried to put a group fix on these two industries, and tried to increase imports
substantially, it would probably force imports to be greater than demand.  In this case, the
newton algorithm cannot find a solution, and it will issue the above complaint.

This appendix closes with a simple example, using made up imports and domestic
demand data.  In Figure A-2 below,  there are 10 sectors to be scaled.  The initial
(pre-scaling) imports are shown in the column labeled "imports", and domestic demand is

in the column labeled "DD".  In the rest of the columns, the header label shows the
control total that imports were scaled to, and the necessary value of required to forceλ
imports to sum to the control total.  The starting total for imports is 300.  Note that to
scale imports upwards,  must be less than 1.0.  To reach a control total of 400, must beλ λ
.41.  Note that imports of sector 1 almost doubled, from 20 to 36.6, whereas imports from
sector 9 only increased from 70 to 80.4.  To reach a control total lower than the unscaled
total, must be greater than 1.  For example, to reach 250, must be 1.52; to reach 50, λ λ λ
must be 15.6!

Figure A-2.  Some Scaling Exercises

Imports DD C = 400, λ = .41 C = 250, λ = 1.52 C = 100, λ = 6.69 C = 50, λ = 15.62

1 20 90 36.6 14.2 3.7 1.6

2 30 80 47.2 22.7 6.6 3

3 40 60 49.7 34.1 13.8 6.8

4 50 70 60 43.5 19 9.7

5 10 30 16.4 7.4 2.1 0.9

6 10 40 17.8 7.2 1.9 0.8

7 15 30 21.2 11.9 3.9 1.8

8 35 50 42.4 30.3 12.9 6.5

9 70 90 80.4 62.8 30.9 16.5

10 20 40 28.2 15.9 5.2 2.4

Total 300 580 400 250 100 50

Interdyme Report #1 10 May, 1995



Figure A-1 below shows the share revision scaling function plotted out for various values
of .  Note how the function bows out more extremely when values approach 0 orλ
extremely large numbers.  When  is equal to 1.0, the shares undergo no scaling revision.λ
Also note that the figure below was created entirely in G.
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Figure A-1.  Share Revision Function Plotted in G for Various
Values of  


