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Abstract

This paper presents the  theoretical study about connecting  inventory  allocation and
market area for the goods, defined by customers’  travelling decisions, influenced by the
expected shortages of goods. Arrivals of customers to the market are Poisson distributed,
the order size by arrival of customers is not only one unit of goods but customer can
demand any number of products. In this case which is closer to the real world systems, a
compound Poisson distribution of cumulative demand has to be considered. In the papers
“Inventories in Spatial Models“ /3/ and “Inventory Allocation and Customer Travelling
Problem in Spatial Duopoly” /3a/ we have emphasized the need for connecting inventory
and location analysis. This problem was studied further by H.J.Girlich in his paper “On
the Metric Transportation Problems and Their Solution”/4/, which gives us proper
foundations for the research described in the paper. The study is influenced by
Grubbström-Molinder’s work  on MRP optimization with the use of Laplace Transforms
and Input-Output Analysis /for details see 5-10/. The annuity stream approach has been
applied in the environment of spatial duopoly, where the optimal ordering policy depends
on the interaction between the prices and shortages of goods in the studied duopolies.
Customer travelling problem (CTP) was defined, which determines the market area for
allocated inventories. In that paper uniform distribution of customer’s demand was
supposed. In this paper we will upgrade our study with compound Poisson distribution of
cumulative demand.

Key words: location, transport, inventory, MRP, Input-Output Analysis, annuity stream, shortage of goods,
duopoly, customer travelling problem, compound Poisson distribution

1. Consumer shopping behaviour and local market demand

The benefit that consumers derive from the facilities system can be used as a measure of
consumers’ welfare. Opportunities available at a certain demand location are often
measured in terms of the cost of reaching a critical number of facilities from consumer’s
location. The cost of reaching the goods from the supply centres depends on spatial
distribution of supply centres (the distances from the user location) and the probability of
the goods being available in these shops when required. We can assume that the trip
chaining generally occurs when the purchase fails at a certain supply centre. Then the trip
is continued to another destination where the required goods are supplied. If the purchase
also fails at a second destination, this chaining of trips continues until the goods are
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found. The probability of success at a certain supply point depends on the inventory
management at this point.

Having the information about the location of supply points and the probability of success,
we can construct, for each separate demand point in the area, the chain of trips with
minimal expected cost of travel at a certain level of risk.

2. Consumer behaviour and MRP approach

Various approaches describing production,  inventory, transportation and  consumption as
the transformation of one set of resources to another set of resources and its distribution
can be found in literature (for details see /10/). The study of spatial interactions and their
influence on optimal inventory policy has not been studied sufficiently. The first such
approach has been given in the paper “Inventories in Spatial Models “ /3/.

Production-supply units which form  a spatial oligopoly,  need warehouses to assure the
final production stage, if it is located there, and to assure the supply of the  final products.
In case that the final products are assembled at the location of supply,  the components
for production of this final products have to be assured with an acceptable shortage level.
Their production and supply policy consist of MRP decisions, price and acceptable
shortage determination. In the literature there are known two approaches to maximize the
supplier’s profits: the traditional average cost approach and the  more appropriate -
annuity stream approach,  which is used here.

The basic question at MRP decisions is how to determine the optimal policy for a
sequence of production quantities. When stochastic demand depends on spatial oligopoly
and the sequences must be decided all at once, it is spatial MRP model which will give us
the answer on this question. Though in this paper in the details we will be considering
two - level systems which appear in spatial duopoly, the theory developed  here is
suitable for generalization to multi - level systems in spatial oligopoly. The duopoly
results are embedded in annuity stream approach to be able to study the interaction
among prices, shortages and ordering policies. In a sense, our treatment which uses the
results of /10/ , /1/ and /2/, develops a MRP analysis in continuous time.

Instead of minimizing average costs involved in production inventory processes, the
maximization of the net present value (NPV) of all payments, including opportunity costs
which are the results of shortage of goods, is included in the procedure of ordering policy.
According to the suggestion given in /10/, by multiplying the NPV by an annuity factor
we obtain the hypothetical constant payment stream (the annuity stream) yielding the
same NPV. If the payments are described in terms of their Laplace transform, the NPV is
directly obtained by exchanging the complex frequency s for the continuous interest rate
ρ.
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Detailed coordination of a two - level MRP system is presented by Grubbström and
Molinder in /10/. In their paper, for the sake of simplicity, it is assumed that the single
final product contains one type or one set of components. In our paper this assumptions
stay the same.

The detailed coordination problem in the mentioned literature involves the simultaneous
optimization of the ordering intervals, ordering quantities and the initial lags. The
shortage of goods which interacts with market area and therefore with demand quantity
determined by /3/ because of customers’ travelling behaviour, is now included in the
optimization procedure considering Compound Poisson distribution of cumulative
demand as the main contribution of the presented paper.

3. Customer’s travelling problem and its behaviour

In the paper of H.J.Girlich /4/ the influence of shortage of goods on the market area was
presented as follows. We assume that customers’ locations are continuously distributed
with the density of demand

r(z) = const > 0

on the area A
A = {z ∈ R2 : r(z)  > 0 }.

Retail of production of  i-th firm, located at the point  zi of this area, is selling the final
product which is available at i-th firm at an arbitrary chosen moment with probability αi .

This probability depends on MRP policy.  The set of all customers’ locations    supplied
primarily from zi is denoted by Ai , defined as

                           Ai ={z∈ A : ECi(z)≤ ECj(z), j ≠ i} (1)

 where Ci(z) denotes  the random  cost for a desired quantity of the commodity for a
customer with residence z patronizing warehouse i. ECi(z) is its mathematical expectation
(see Girlich /4/).

We assume
         A= ∪ Ai             Ai ∩ Aj = ∅  ,      i ≠ j     i  = 1,2, … , n        (1.a)
                              I

In this paper the distance between the location of retail i (   zi=(xi, yi))  and  consumer
z=(x,y) is assumed to be Euclidean. We still have the same assumption.

We are looking for a rational partition of total demand corresponding to market areas
described by (1). Every customer has to patronise one  retail. His decision depends on
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• the mill price pi for the commodity at i ,
• the transportation cost,
• the uncertainty αi at each  i.

When a customer arrives to the zi, there are two possible events:

1. supply unit i is empty……………………...{Wi =0}
2. the commodity is available at i……………..{Wi =1}

The uncertainty of this oligopoly system can be described by random variables W1, W2,
W3, ….Wn, with the state space {0,1}of each random variable  and

P(Wi=0) = αi∈[0,1] and
P(Wi=1) =  1-αi ∈[0,1],  i =1,2,…,n

where αi  is the probability of shortage of goods at i-th supply unit.   (2)

4. Duopoly of supply for spatial demand  under the shortage of goods

Let us simplify this problem for the situation, where there are only two production-supply
enterprises  with their supply in z1=(1,0) for the first unit and z2=(0,0)  for  the second
unit (see Fig.1.). Let us study in this paper Girlich’s assumption for policy of delivery:

P( Wi=1| Wj=0) =1, for i≠j, i =1,2 , j =1,2                                         (3)

This assumption ensures that the commodity is available in the other  supply unit in case
of a shortage of production in j-th unit,   j=1,2. We call it  the D2 model.

We wish to calculate  market areas for the enterprise in z1 and the  enterprise in z2 , to
determine demands d1 and d2 in a time unit if there are given margins for the  total area A
and density r(z) which is for the sake of simplicity in this paper constant: r(z)=r

Let Ci(z) denote the cost for a unit of the commodity for a customer with residence z
patronising supply unit i. Because of  uncertain supply in i, where he is going to buy this
product at first travel, Ci is a random variable. If li is the Euclidean distance to the i-th
supply unit and ti  the corresponding transportation cost factor, we obtain for i≠j:

                                     pi + 2tili (z)                                                , for Wi =1
Ci(z) =                                                                                   (4)

                                     tili(z) + tijlij + pj + tjlj(z)             , for Wi=0

 Here
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tij………….  is the transportation cost  factor  for travelling from i to j which arises in the
case that the good  is not available in i  and
l ij………      is  the distance from i-th to j- th unit.

Every customer from area Ai is travelling first to zi and in the case that there is a shortage
for this item there, he is continuing his travel to zj, where (according to our assumption)
he gets the product with certainty.

From  (4) follows the boundary between Ai and Aj:

ECi(z)=ECj(z) (5)

(2-αi  -αj) (tili(z)  - tjlj(z)) = tijlij (αj -αi    ) + (pj-pi) (1- αi -αj)

Because the transportation costs are known, boundary depends only on  shortage α and
final price p of duopolists. Boundary divides  Aj and Ai and therefore  determines the
demand di  at zi.

Duopolist i  determines the value of  αi and pi        so that demand di   

di= r( (1- iα )Ai+αjAj) (6)

will give the optimal annuity stream ρNPVi:

ρNPVi (α1, α2, p1, p2,T2i,mi) = di (α α1 2 1 2 1 1 2, , , )( )p p p c ci i− − -

  − + − + −
ρ
2

1
1 2

1
1

2( ) ( )K K
T

K
K

mi i
i

i
i

i

 di

ρ T
c m c

i

i i i

1

1 22
( )+                                      (7)

where we use the following notation:

ρ NPVi…………………..annuity stream of i-th supply unit, i=1,2,
di ……………………….external demand rate for final products in i-th supply unit,
c1i………………………...the echelon stock value of  final product in i-th supply unit
                                          (a value added in the process of manufacturing the item)
c2i……………………… the echelon stock value of  component  in i-th supply unit, unit
                                         (a value added in the process of manufacturing the item)
ρ…………………………continuous interest rate,
K1i……………………….the set-up cost of final products in i-th supply unit
K2i……………………….the set-up cost of components in i-th supply unit
T1i……………………… ordering interval for final products in i-th supply unit
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T2i……………………… ordering interval for components in i-th supply unit

mi   = T2i / T1i

.

The formula (7) for the annuity stream is derived from the general expression for the
annuity stream using MRP theory, input output analysis and Laplace transform given in
/1/ which is a special two- level case of general expression of ρNPV , presented in /10/.

5. D2- model of equal prices embedded in MRP

Let us study the special case 2.3.1. of the paper presented by Girlich /4/ .

He calls it the D2- model with equal mill prices and equal transport cost factors.
In this example

α1≤α2<1 (8)

holds.

From (5) he got

a +|z| = l1(z) (9)

where

a := (α2  - α1 ) / ( 2 -α1  -  α2) (10)

and from (8) follows

0≤ a <1 (11)

Let us study MRP problem, presented by /1/ and /10/ on the area  XY, where

XY = (x+1 - x-1) (y+1 - y-1)

For boundary the following expression is valid:

                  ∂A2 =min {y+1, y}, for y>0
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                  ∂A2 = max {y-1, y}, for y<0

                 where y is determined with the following  equation

y2 = (x-0,5)2 (1-a2)/ a2  -0,25(1-a2)   , a>0                                                                                                                                                                        
x  = 0,5                                              , a=0                                         (12)

                In our case we can write

                        y2 = (x-0,5)2 (1-a2)/ a2  -∆

where ∆ is supposed to be negligible for our problems (x-1 is great enough). (see Fig. 1
which presents the boundary of market areas for two duopolists).

         y

          1

                                                 z2                            z1

         0
                                                A2               A1

         -1

                                                                                      x

Fig 1. The boundary of market areas for two duopolists.

For the second production - supply unit which knows that the shortage of goods for the
first production unit is α1, in case, that a >0 its market area is

• for y≤y+1

A2(a) = )
4

1

4
(

1
1

2
1

2

2

2

−− +−−
−

− xx
a

a

a
                                     (13)

d2(a) =     ( )1( 2α−  A2 + α1 A1 )r =  ( )1( 2α−  A2 + α1 ( XY -A2 )) r                        (14)



8

cumulative
supply
and
demand

                                                                                                                                                           ∆Tk

             λ(kT)

                                                                                            T12

                                                                                 T22

                                                                                                                                                         d(kT)

                                                                                                                                                    time

                                    cumulative expected demand ∑d2  of demand d2

                                    cumulative supply

T12……………………… ordering interval for final products in second supply unit
T22……………………… ordering interval for components in second supply unit

Fig. 2: The ordering policy (see details in /10/ )

• if there is  y>y+1
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A2( a ) = B( a ) + D( a )

The demand in the second example ( if there is  y>y+1) has the same expression as in
(14). We wish to find α2 and m2 at which the annuity stream presented in (7) will be
maximal.

Let us for the beginning assume that we do not know much about the distribution of the
external demand and we know only upper and lower bound of cumulative demand. In this
case we will suppose that the cummulative demand at time t can appear on the interval

)))(,)((( sttstt +− λλ with constant probability density and L2  is projection of s.
From this supposition of the demand per unit of time  we can determine L2 (see Fig.2):

L2=2α2T12 (17)

L2 is the length of time on the interval T12, where shortage of goods can appear because of
increasing demand.  In Fig.2 there is drawn the cumulative expected demand ∑∑d2 and the
upper bound of this cumulative demand.  In this case  the projection of the cumulative
demand is supposed to be uniformly distributed  on the present belt with the probability
½ which can be assumed only if we have very little information about distribution itself,
but we know that cummulative demand cannot exceed upper bound to the right and lower
bound to the left. The lower bound can be drawn symmetrically on the other side of the
expected demand line.

Correspondingly probability for shortage α2 at step k, if the demand is Poisson (Po)
distributed, is analogous

( )∑
∞

=

+=
112

2

1
),(

x

xkxPo
T

kPo λ
λ

α

and for compound Poisson distribution
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6. Why to use Compound Poisson distribution in MRP models

In considered case the total number of customers (or equivalently total demand for
products up to time t when each customer requires one product only) is Poisson
distributed and the times between events (arivals of customers) are exponentially
distributed. The time to the k-th event (the arrival of k-th customer) is Gamma
distributed.

In the case that customers demand several products at arrival and not only one, the
cumulative demand is properly modelled by Compound Poisson distribution, because the
process in this case is compound stochastic process by nature where we have a random
sum of random variables as can be seen from the expression for cumulative demand S(t):

∑
=

=
)(

1

)(
tN

i
iXtS

Here N(t) denotes the number of customers arriving on the interval (0,t], which is itself a
random variable.

At the discussed D2- model we wish to find

max {ρNPV( a  (α2),α2,m2)}
                                   α2,m2

The annuity stream is expressed by

ρNPV (a (α2),α2,m2)=d2( a )( ( )p v1 1− 12
221

2

))1((
T

mvv −+
−

ρ
) -

212

2
121

1
)()(

2 Tm

K
KKK +−+−

ρ
                                                                                      (18)

where c=v (I-H) , H is input-output matrix (see /1/,/2/ and /10/) and
v is inventory value with components v1 and v2.

1. For uniformly distributed projection of  cumulative demand in a certain point t we can
write

ρNPV (a (α2),α2,m2)=d2( a )( ( )p v1 1−
2

2221

22

))1((

α
ρ Lmvv −+

− ) -

2

2

2

2
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2
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2 Lm

K
KKK

αρ
+−+−                                                                                    (18a)
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Lemma  1a:
The optimal value of the annuity stream at unknown  distributed demand with
known lower and upper bound can be estimated  by  the set of  equations

(p v1 1−
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2221
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))1((
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ρ Lmvv −+
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2 1
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1 2
2

( )

( )

−
− −
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and

                                         
2

2
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2

L
m

α
= (

ρv

K
2

22
 d2(a))-1/2                                     (20a)

Proof:
The necessary conditions for optimality are:

d

dα 2

ρNPV( a (α2),α2,m2)= 
∂
∂a

ρNPV( a (α2),α2,m2)
da
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∂
∂m2
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from which follows:
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and also

2

2
12 2α

L
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Let us note that ρNPV( a (α2),α2,m2) is concave so that solving the necessary optimality
conditions is sufficient.

This results give us the maximal estimated annuity stream  at optimal decision for
uncertainty of availability of final product where there are two players in the competition
for customers.

This approach helps us to derive the formulas for more sophisticated model which is
closer to the real – world situation, where the cumulative demand has compound
distribution. So we can express for the two-level MRP model the annuity stream (for
details see Grubbström, Molinder, IJPE 1994) in its extended form as (the mathematical
expression of annuity stream is extended to the case of different times between ordersT1,i

for different steps):
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where
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and )(xf X  is probability function of chosen probability distribution of X.

Now we have two possibilities:

1. We can choose constT k =,1 .

or

2. const=2α

We decided to consider the second possibility: const=2α .,

so kT ,1 can be written as:
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Let us note that )( 2αa is a function of customer travelling policy. For 2D - model of equal
prices a is equal to:

21

12

2 αα
αα
−−

−
=a , (30)

where const=1α

In the case that for the probability distribution of cumulative demand we choose Poisson
distribution Po, the expression (27) for NPVρ  is the same, only the expressions (28) and
(29) change as follows:
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Now we want to determine the optimal value of probability of shortage 2α .

Theorem 1:

The necessary optimality conditions are:
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In the case of Poisson distribution of cumulative demand X, the necessary conditions of
optimality are stil the same and given by Theorem 1, only kT ,1  is given by
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Κ= ,...,2,1x

Now we consider the general case where the number of customers’ arrivals up to time t:
N(t) is Poisson distributed. Demand in real world systems is in general for more than one
product at a time. In this case we can make a natural choice:
The distribution of cumulative demand is compound Poisson distribution (CPo).
We will answer the question: How does this affect the net present value?
In the case of compound Poisson distribution of cumulative demand the times between
the orders kT ,1 , Κ= ,...,2,1k have the following form:
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k λα

λα∑ ∑
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= =

+
= (38)

where )(xf S is the probability function of compound Poisson distribution and can be

calculated according to recursive formula given in Theorem 1.

The general expressions for necessary conditions of optimality (33)-(34) are still valid
considering for kT ,1 , Κ= ,...,2,1k  (36) or (38) instead of (35).  So we get the following

two Lemmas:
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Lemma  1b:

The optimal value of the annuity stream at Poisson distributed demand is
determined by  the set of  equations
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Lemma  1c:

The optimal value of the annuity stream at compound Poisson distributed demand is
determined by  the set of  equations
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7. Conclusions

In the paper we have shown how to use MRP and Input - output analysis (the NPV
model) to investigate the results of customers’ behaviour when the supply units compete
for customers and they are exposed to uncertain demand which results to possible
shortage of goods. Customer’s travelling problem and customers’ behaviour are here
described by equations (1-5), considered by Girlich /4/ and influenced by /3/. On the
bases of  mentioned results, the optimal ordering policy which includes also the optimal
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shortage of goods  is derived  here. The results can be extended also to the other
customers’ travelling behaviour described by /4/ or even to more general cases.

We have shown that the proper way to handle the model, in the case that more than one
product can be demanded by customers at their arrival, is to use Compound Poisson
distribution of total demand, while the time to the k-th event is Gamma distributed. The
stated Compound Poisson distribution model of total demand is combined with MRP,
Input-Output analysis and customer traveling problem stated in this framework, is solved.
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