MARYLAND INTERINDUSTRY FORECASTING PROJECT

Research Memorandum No. 29

November 9, 1970

1967 Capital Flow Matrix

by

Edgar J. Carlyle

The capital flow table links the output of capital goods industries to the investment spending of all industries in the economy. The completed table has 60 rows and 94 columns. Each row represents a capital producing industry, and each column, a capital purchasing industry. There are only 60 rows because only 60 of the 185 industries in the model produce capital equipment. There are only 94 columns because investment time series are not available to match the full detail of the 185 industries. They are aggregated into 94 groups for the purposes of capital investment functions.

A cell within the matrix, say in the fifth row and ninth column, contains the dollar value of equipment produced by industry number 5 and sold to investment group number 9. The sum of all the cells in row number 5 would yield the total value of capital equipment produced by industry number 5, and the sum of all cells in column number 9 would equal the value of investment, in equipment, of investment group number 9.

Summary of the Construction of the 1967 Capital Flow Matrix

There were four primary pieces of information used in the construction of the 1967 table. This raw material was: 1)

Capital Flow Matrix, 1958, a publication of the U.S. Department of Labor, 2) production of capital equipment, which came from the balancing of the input-output matrix, 3) the purchases of capital equipment, by investment group, which had to be estimated using data from the Census of Manufactures, Census of Mineral Industries,

Survey of Current Business, (January, 1970), and 4) known flows, which are dollar values of capital equipment known to be sold by a particular industry to a particular investment group. The known flows eminated from studies done on the Transportation Industry and some of the more detailed product information in the Census of Manufactures. The problems of working with the 1958 matrix were two-fold. The 1958 matrix has only 35 rows and 77 columns. More detail was desired so the industries in the capital flow matrix would "match up" with the industries used in the input-output matrix, therefore the first problem was to disaggregate the rows and columns of the 1958 matrix. In addition, two "ghost" industries which purchase capital equipment had to be added. These industries are the Computer Rental Industry and the Personal Auto Industry. The second problem was to revise the 1958 values in the table to make them apply to 1967.

The Computer Rental Industry arises from the fact that most computers are not sold, but are rented. They therefore do not show up in the investment reported by manufacturing plants. Since these investment data are fundamental for us, we prefer not to tamper with them by making adjustments for computer ownership. Instead, we created a special industry that does nothing but buy and rent computers. It has not a single employee or other input, for these are all in manufacturing or business service industries.

Another anomalous capital purchaser is Personal Automobiles.

Many automobiles that are purchased by individuals are used for business purposes. In the National Accounts, some estimate

is made of these automobiles classified as Producer Durable Equipment.

In our model, a special Personal Automobile Industry buys these

cars to keep our definition similar to that in the Accounts.

The first step in expanding the 1958 matrix was to increase the number of columns from 77 to 94. This spreading was accomplished by using the 1967 purchases of capital equipment as column controls. The 77 columns were divided in proportion to the 94 column controls. Suppose, for example, that the 50th column of the 1958 matrix was to be divided among the 61st, 62nd, and 63rd columns of the 1967 matrix. The old 50th column would first be put into each of the three new ones, 61, 62, and 63. Then the values in each new column were forced to add to the column's control by multiplying each cell in a column by the same constant.

The spreading of the rows was similar to the spreading of the columns, with one exception. The known flows were utilized in spreading the rows. Use of known flows allows us, for example, to insure that airlines buy airplanes and railroads buy locomotives, rather than dividing airplanes and locomotives between them in proportion to their spending. First we subtracted all the known flows from the new row controls to get what we may call residual row controls. Each cell in the old matrix which contained no known flow was spread in proportion to their residual row controls. If however, the old cell had any known flows in it, these known flows were allocated directly, and the residual in the old cell was spread in proportion to the residual row controls of the rows not containing known flows in that column.

Suppose, for example, that old row number 25 was to be spread into new rows 35, 36, and 37. Let us call the old matrix A and the new matrix B. Since the spreading must be done a column at a time, let us assume that column number 5 is currently being dealt with. Suppose further, that there is a known flow in the new matrix at B 35.5. This situation is described in figure one.

Column 5

Residual Row Controls

01d Row 25

Known Flow	New Row 35	RC - Known Flows In 35 = RRC_{35}
	New Row 36	RC_{36} - Known Flows In 36 = RRC 36
	New Row 37	RC - Known Flows In $37 = RRC_{37}$

Figure 1

B is easy to specify: its value is simply that of the known 35,5 flow. B is equal to the value of old B less the known 36,5 flow and multiplied by a ratio of the residual row controls for rows without known flows in column 5. In symbols:

$$B_{36,5} = (A_{25,5} - B_{35,5}) \cdot \frac{RRC_{36}}{RRC_{36} + RRC_{37}}$$

The spreading of the columns insures that the new columns have the right column sums. The same is not true of the row spread when there are known entries.

The only problem remaining, therefore, is to insure that the sum of each row equals the row control for that row, while keeping the sum of each column equal to the column control for that column. This dual equality was obtained by "balancing" the matrix. The

balancing began with the rows. Each row was summed and a ratio of the row control to the sum was found for each row. Each row was then multiplied by the ratio for that row, thus forcing the sum of each row to equal to its row control. With this procedure completed, the sum of the columns no longer equaled the column controls, so that the same process was applied to them. By moving from rows to columns, back and forth, the adjustments become smaller until the matrix is balanced. The known flows are then inserted and the matrix is finished.

Detailed Explanation of the Estimation of Capital Equipment Expenditures Column Controls

(1) Agriculture

Source: Farm Income Statistics U.S.D.A.

\$1310. Motor Vehicles, Total 1967

2799. Other Machinery & Equipment, 1967

4190. Total Producers' Durable Equipment (PDE) (x1000)

(2) Mining

Source: Census of Mineral Industries, 1963

\$75.2 Metal Mining

8.1 Anthracite

152.2 Bituminous

157.1 Non-metals

392.6 Mining PDE; except Oil & Gas, 1963

Source: Survey of Current Business, January 1970

\$1270. Mining New Plant and Equipment (NP&E), 1963 1650. Mining New Plant and Equipment (NP&E), 1967

PDE for 1967 is estimated by increasing the 1963 figure by the same percentage as the increase in NP&E.

$$^{PDE}_{1967} = \frac{1967}{NP\&E} \times PDE_{1963} = $510.7$$

(3) Petroleum

Source: Census of Mineral Industries, 1963

\$743.4 PDE, 1963

The 1963 equipment figure was expanded to 1967 by increasing it by the same proportion as the increase in the sale of oilfield machinery.

Source: Census of Manufactures, 1967

\$572.7 Oilfield Machinery, 1963 660.1 Oilfield Machinery, 1967

 $PDE_{1967} = \frac{11ACH_{1967}}{MACH_{1963}} \times PDE_{1963} = 856.8

(4) Construction

Source: Survey of Current Business, January 1970

\$14590. NP&E, Commercial and Other, 1967

10990. NP&E, Commercial and Other, 1963

1700. NP&E, Construction, 1963

Construction NP&E was 15.5% of Commercial and Other, NP&E. Using that percentage on 1967 Commercial and Other, we get: Construction NP&E, 1967=\$2256.9.

Source: Capital Flow Matrix, 1958

PDE expenditures for the Construction Industry were 97% of NP&E. PDE for Construction in 1967 = 97% of NP&E for 1967 = \$2189.2.

(5-79) Manufacturing

Source: Census of Manufactures, 1967

NP&E for four-digit industries were found.

Source: Annual Survey of Manufactures, 1966

NP&E and PDE for four-digit industries, for 1964, 1965, and 1966 were found. 1967 PDE was estimated as follows:

The four-digit PDE's were then aggregated into industries numbered 5 through 79.

(80-84) Transportation

The column controls for these industries were found by Charles Bausell by direct investigation into the Transportation Industries.

(85) Telephone, Telegraph, & Communication

Source: Survey of Current Business, January 1970

\$6340. NP&E, 1967

Source: Statistical Abstract of the United States

\$1638. Construction, 1967

$$PDE_{1967} = NP&E_{1967} - Construction_{1967} = 4702.$$

(87) Electric Utilities

Source: Survey of Current Business, January 1970

\$6750. NP&E

Source: Statistical Abstract of the United States

\$6825. 1966 Public Utilities Construction

3060. 1966 Electric Utilities 6967. 1967 Public Utilities

1967 Electric Utilities Construction is estimated by:

= \$3123.7

1967 PDE = 1967 NP&E - 1967 Construction = \$3626.3

(88) Natural Gas & Water

Source: Survey of Current Business, January 1970

\$2000. NP&E

Source: Statistical Abstract of the United States

\$6825. Public Utility Construction, 1966

1758. Gas & Water Construction, 1966

6967. Public Utility Construction, 1967

1967 Gas & Water Construction is estimated by:

Gas & Water Construction x 1967 Public Utilities Construction 1966

1967 PDE = 1967 NP&E - 1967 Construction = \$207.5

(90) Wholesale & Retail Trade

Source: Survey of Current Business, January 1970

In 1963 Wholesale & Retail Trade was 44.04% of Commercial and Other.

\$14590. NP&E Commercial and Other, 1967

x44.04%

\$ 6425. NP&E Wholesale & Retail Trade 1967

Source: Capital Flow Matrix, 1958

PDE was 69.6% of NP&E

\$6425

x69.6

\$4472. PDE 1967

Some manufacturers are active in Wholesale and Retail Trade.

Source: Survey of Current Business, January 1970

\$28150. NP&E for Manufacturers

- 5080. NP&E for Petroleum

\$23430

Source: Census of Manufactures

\$20268. NP&E for Manufacturers - 1004. NP&E for Petroleum

\$23430.

-19264.

\$ 4166. NP&E for manufacturers outside of Manufacturing

Source: Capital Flow Matrix, 1958

PDE for Trade was 69% of NP&E. Applying that percentage to NP&E for manufacturers outside of Manufacturing:

\$4166 69% \$2895

This figure is considered part of Wholesale and Retail Trade, so that total Trade PDE:

\$2895. Wholesale & Retail Trade by Manufacturers

\$4472. Wholesale & Retail Trade by Non-Manufacturers

\$7367. Wholesale & Retail Trade

The renting of computers by the Electronics Industry is Trade, and since it is being placed in another category (Computer Rental), it should be subtracted from Wholesale & Retail Trade. Derivation of Computer Rental PDE is given later in this paper.

\$7367. Wholesale & Retail Trade, PDE

-1508. Computer Rental, PDE

\$5859. New Wholesale & Retail Trade, PDE

(91) Finance and Insurance

Source: Survey of Current Business, January 1970

Finance & Insurance is 13.65% of Commercial and Other.

\$14590. NP&E Commercial and Other, 1967

x13.65%

\$ 1991. NP&E for Finance and Insurance, 1967

Source: Capital Flow Matrix, 1958

PDE for Finance and Insurance, in 1958, was 50.8% of NP&E.

\$1991.

50.8%

\$1012. PDE

+1829.5 for balancing

\$2841.5 Adjusted PDE

(92) Services

Source: Survey of Current Business, January 1970

\$14590. NP&E Commercial and Other, 1967

10990. NP&E Commercial and Other, 1963

2960. NP&E Services, 1963

NP&E for Services for 1967 are estimated by assuming that is the same percentage of Commercial and Other as it was in 1963.

NP&E =
$$\frac{2960.}{10990.}$$
 x 14590. = \$3929.6

Source: Capital Flow Matrix, 1958

PDE for Services, in 1958, was 48% of NP&E. By assuming the same proportion in 1963:

\$3929.6

49%

\$1901. PDE

+3437.1 Balancing

\$5338.1 PDE, Adjusted

(93) Personal Auto

From previous MIFP studies 15% of Passenger Cars are used for business purposes.

Source: Census of Manufactures

\$19276. Sale of Passenger Autos

15%

2891. PDE

(94) Computer Rental

Source: Census of Manufactures

\$1905. Production of Digital Computers

- 205. Export

\$1700. Domestic use of Computers

From previous MIFP studies 88.7% of Domestic Computers are rented rather than sold.

\$1700.

88.7%

\$1508. PDE

Balancing entries are added to industries 92 and 93 to insure that equipment production equals equipment purchases. This equality is necessary for logical consistancy, the amount sold must equal the amount purchased, and to insure that the Capital Flow Matrix can be balanced. The balancing figure is the difference between the sum of the row controls and column controls.

\$54024. Sum of Row Controls
48757.4 Sum of Column Controls
5266.6 Balance

Balance is allocated to Finance & Insurance and Services in proportion to their PDE's.

```
INEW NOLD RONEW(I)
                       FLOOR COVERINGS
       36
              69.60
       43
               6.80
                       WOOD MILL PRODUCTS
                       HOUSEHOLD EURNITURE
       45
             152.10
       46
            1600.00
                       OTHER FURNITURE
       7.3
              22.40
                       PURRER PRODUCTS. EXCLUDING TIRES AND TUBES
       9.0
              39.50
                       NON-FERROUS CASTINGS AND FORGINGS
                       METAL BARRELS. DRUMS. AND PAILS
              11.40
       93
                       STRUCTURAL METAL PRODUCTS
       95
            1094.70
                       CUTLERY. HAND TOOLS. AND HARDWARE
       38
              18.80
  10
     100
             235.90
                       VALVES, PIPE FITTINGS, AND FARRICATED PIPE
  11
     101
             74.70
                       OTHER FABRICATED METAL PRODUCTS. NEC
  12
     102
             656.30
                       ENGINES AND TURBINES
  13
     103
            3371.80
                       FARM MACHINERY
  14
     104
            2585.90
                       CONSTRUCTION. MINING. AND OIL FIELD MACHINERY
 15
     105
            1169.90
                       MATERIALS HANDLING MACHINERY
 16
     106
            1573.00
                       MACHINE TOOLS, METAL CUTTING
 17
     107
             465.40
                       MACHINE TOOLS. METAL FORMING
            1281.90
 18
     108
                       OTHER METAL WORKING MACHINERY
  19
      109
            3310.80
                       SPECTAL INDUSTRIAL MACHINERY
  20
     110
            1146.30
                       PUMPS . COMPRESSORS . BLOWERS . AND FANS
  21
     113
            1082.80
                       INDUSTRIAL PATTERNS
  22
      114
            2328.60
                       COMPUTERS AND RELATED MACHINES
  23
     115
             565.80
                       OTHER OFFICE MACHINERY
  24
      115
            1858.€0
                       SERVICE INDUSTRY MACHINERY
  25
      117
              13.10
                       MACHINE SHOP PRODUCTS
  26
      118
             642.30
                       ELECTRICAL MEASURING INSTRUMENTS
  27
      119
            1557.00
                       TRANSFORMERS AND SWITCHGEAR
  29
      120
             273.70
                       MOTORS AND GENERATORS
  29
     121
             102.90
                       INDUSTRIAL CONTROLS
  30
             327.20
     122
                       WELDING APPARATUS AND GRAPHITE PRODUCTS
  31
     123
             157.50
                       HOUSEHOLD APPLIANCES
  32
     124
              83.00
                       ELECTRIC LIGHTING AND WIRING EQUIPMENT
```

```
33
   125
           187.80
                     RADIO AND TV RECEICING
          2120.80
                     COMMUNICATION EQUIPMENT
34
   127
35
   128
           221.50
                     FLECTRONIC COMPONENTS
3F
    129
           124.40
                     BATTERTES
37
    131
           148.40
                     Y-RAY FOUTPMENT AND FLECTPICAL ECHIPMENT NEC
                     TRUCK . PUS. AND TRAILER BODIES
    132
          1115.20
39
    133
          6618.70
                     MOTOR VEHICLES AND PARTS
40
    134
          2305.00
                     AIRCRAFT
                     SHIP AND BOAT BUILDING AND REPAIR
    137
           573.80
    138
          1575.50
                     RATEROAD EQUIPMENT
                     CYCLES AND PARTS AND TRANSPORTATION EQUIPMENT NEC
43
    139
           227.40
    140
           124.00
                     TRAILER COACHES
                     ENGINEERING AND SCIENTIFIC INSTRUMENTS
45
           173.40
    141
                     MECHANICAL MEASURING REVICES
           345.70
    142
                     OPTICAL AND DOMINALMIN GOIDS
47
           251.80
    143
                     MEDICAL AND SUPCICAL INSTRUMENTS
   144
           402.60
                     PHOTOGRAPHIC EQUIPMENT
49
           545.30
   145
                     WATCHES. CLOCKS. AND PARTS
50
   146
              .70
                     TOYS. SPORTING BORBS. AND MUSICAL INSTRUMENTS
51
   149
           295.20
                     MISC. MANUFACTURING. NEC
52
   150
           336.50
53
                     PATIDOADS
   151
           332.60
                     TOUCKING AND MISC. TRANSPORTATION SERVICES
   153
           461.00
55
                     WATER TRANSPORTATION
   154
            20.70
                     ATP TRANSPORTATION
56
   155
            31.00
   159
57
                     TELEPHONE AND TELEGRAPH
           588.20
59
    16.3
          3692.00
                     WHOLESALE TRADE
50
   164
          3323.80
                     PETATE TRADE
60
   166
             1.70
                     INCUPANCE
```

COLUMN ADJUSTMENT FACTORS

																:		
POW CONTROLS	5																	
89.F		5.8		152.1		1600.0		22.4		• 0		11.4		1094.7		18.8		235.9
74.7		• 0		271.8		1893.2		1169.9		1573.0		465.4		1281.9		1430.8		1146.3
1082.8		620.6		565.8		1104.0	•	13.1		642.3		141.4		273.7		102.9		327.2
157.5		83.0		187.8		228.9		221.5		124.4		45.9		1115.2	-	2796.3		135.3
353.8		309.2		163.0		124.0		173.4		345.7		251.8		119.1		545.3		.7
295.2		336.5		332.6		461.0		20.7		31.0		588.2		3692.0		3323.8		1.7
COLUMN CONTR	20L5																	
928.7		246.2		428.6		2189.0		144.3		76.9		28.2		106.4		118.0		61.2
39.2		42.2		25 0 . 2		140.7		27.8		69.4		28.6		41.3		33.4		30.5
156.3		118.2		89.0		13.6		14.6		54.1		674.8		59.7		186.4		92.2
998.7		100.7		132.3		749.0		106.0		65.9		33.4		288.8		94.0		97.0
204.9		14.2		30.8		123.3		347.8		1676.2		656.1		179.0		29.3		166.9
. 225.5		162.0		128.4		103.6		180.0		155.7		124.5		220.3		85.0		135.8
178.7		91.1		142.4		97.4		104.0		59.4		270.7		260.0		68.9		646.5
472.1		47.3		31.0		12.6		10.4		38.8		37.1		69.5		101.1		356.3
180.0	•	53.6		. 65.0		51.0		2806.1		.0		1554.1		24 4 • 0		•0		6768.6
1140.0		3888.0		.0												•		
11.00.0	•	30.7000			*	• • • • • • • • • • • • • • • • • • • •												
POW ADJUSTME	ENT FAC	CTORS																
015912	285	.082	755	.000	445	154	.156	.156	.156	.000	119	. 309	.505	.173	.173	.173	018	050
050269																		
516516																		
	•	• . • .	• /2.2 ·	•		•	C	• • • •	• , 3 3	• 1.5	•	• • • •	••••	*	• 12 2	1010		
COLUMN ADJUS	STMENT	FACTO	ף ק	*			•											
447 .222	.156	074	. 261	236	674	191	.142	402	.032	.007	.007	.007	.315	425	-044	.044	407	.060
.044 .129	.615	.012	671	.000	.319	177	105	574	.115	.115	005	005	007	007	.011	.088	31 3	.035
.035 .029	.064	.252	.008	018	009	044	040	040	051	029	098	.082	031	037	.294	005	063	-138
.080 .018				155							.058				015			
721530				.000							1.084							
KOUNT IR	Y A Y	3.272	1 CMAX	1.08	44										ν.			
															4			
POW ADJUSTME	-																	
076 .063															001			
027071	1171	.423	- • 236	•012	140	.016	.027	.015	161	- • 045	218				. 264			
2.069 2.069	2.150	2.103	- • 084	085	033	.026	034	.736	186	186	.006	• 00 6	.219	. 153	250	-001	- 00 1	1.579
COLUMN ADJU				_														
030142															•083			.068
•013 -•042																		• 03 4
· •028 •035																		
.018002													.130	• 02 3	•023	•029	• 02 3	110
4691196	446	444	• OS 7	• 000	026	016	.000	• 03 9	• 015	• 05.7	• 000	• 00 0						
KOUNT 29	мах	2.149	7 .C MA X	.45	92													
MISHPOR MUG	ENT FA	CTOBS																
P28 .N11	022	027	032	.000	.032	• 02.8	.025	•U23	.028	•000	019	• C4 3	.022	.002	-002	-002	010	• 02 0
•020 -•00°																		
.225 .225	.235	.227	017	016	041	.029	04C	1154	039	u39	005	005	012	011	080	006	006	- • G4 1
	r 																	

-.007 -.044 -.024 -.029 -.004 +.027 -.025 -.027 -.027 -.025 -.018 -.020 -.019 .009 -.007 .010 .010 -.006 .012

```
-.001 -.018 -.018 .004 -.000 .600 -.022 -.004 .017 .025 -.029 -.029 -.007 -.008 -.000 -.005 -.033 -.007 -.002
-.002 .003 .606 -.614 -.023 -.009 -.605 -.000 +.607 -.007 -.001 -.609 -.012 -.002 -.015 -.006 -.005 -.007 -.000 .008
.002 -.003 -.003 -.007 .001 .007 .002 .001 -.000 .001 -.005 .000 .000 .000 .004 .004 .004 .013 .001 -.026
--134 --026 --130 --129 -032 -000 --005 --003 -000 -009 -003 -018 -000 -000
KOUNT
        3RM AX
                 -2352 CMAX
                           -1337
POW ADJUSTMENT FACTORS
-.009 .004 -.007 -.008 -.007 .000 .008 .010 .010 .011 .011 .000 -.008 .022 .007 .005 .005 .005 .002 .013
.013 -.001 -.061 .018 -.069 -.065 -.011 -.006 -.006 -.005 -.009 -.011 -.030 -.002 -.010 -.010 -.010 -.010 -.007 -.008 .023
.043 .043 .045 .044 -.004 -.004 -.015 .014 -.015 -.018 -.011 -.011 -.001 -.001 -.003 -.002 -.031 -.001 -.001 -.001
COLUMN ADJUSTMENT FACTORS
-.003 -.012 -.003 -.015 -.003 -.008 -.008 -.008 -.008 -.007 -.007 -.006 -.007 -.007 -.007 -.001 -.003 -.001 -.001 -.002 -.000
-.002 -.007 -.007 -.003 -.002 .000 -.010 -.004 .003 .008 -.011 -.011 -.006 -.006 -.004 -.003 -.002 -.010 -.006 -.005
-.005 -.003 -.001 -.006 +.011 -.006 -.005 -.003 -.004 -.004 -.003 -.005 -.005 -.003 -.006 -.004 -.003 -.001
--001 --003 --004 --003 --004 --003 --001 --002 --003 --002 --002 --001 --001 --001 --001 --001 --001 --001 --002 --002 --007
-.031 -.007 -.030 -.030 .011 .000 -.002 -.001 .000 .002 .001 .005 .000 .000
KOUNT
                 .0454 CMAX
        4 PM AX
                           .0309
ROW ADJUSTMENT FACTORS
-.002 .003 -.002 -.002 -.001 .000 .003 .004 .004 .005 .004 .000 -.002 .011 .003 .004 .004 .004 .003 .006
.006 .001 .001 .006 -.002 -.001 -.003 -.001 -.001 -.001 -.002 -.003 -.010 .000 -.003 -.004 -.004 -.002 -.002 .006
.011 .011 .011 .010 - .000 - .000 - .000 - .000 - .000 - .000 - .000 - .000 - .000 - .000 - .000 - .000 - .000
COLUMN ADJUSTMENT FACTORS
-.002 -.004 -.004 -.008 -.002 -.003 -.003 -.003 -.003 -.003 -.003 -.003 -.003 -.003 -.001 -.002 -.002 -.002 -.002 -.002
-.002 -.004 -.004 -.003 -.002 .000 -.005 -.003 -.001 .002 -.004 -.005 -.004 -.004 -.003 -.003 -.003 -.002 -.004 -.003
-.003 -.003 -.002 -.003 -.005 -.004 -.004 -.003 -.003 -.003 -.003 -.003 -.003 -.002 -.003 -.003 -.003 -.003 -.001
-.002 -.003 -.003 -.003 -.003 -.001 -.002 -.002 -.003 -.002 -.002 -.001 -.001 -.002 -.002 -.002 -.002 -.001 -.002
.0084
KOHNT
        5 RM AX
                 -0113 CMAX
ROW ADJUSTMENT FACTORS
 .000 .002 .000
                 .000 .001 .000 .002 .002 .002 .003 .000 .000 .006 .002 .003 .003
                                                                                            -003
                                                                                                  - 00 2
                                                                                                       - 00 3
           .003 .001
 .704 .004
           .004
                 .004 .001 .001 -.000 .603 -.000 -.001 .000 .000 .001 .001 .001 -.003 .001 .001
CUMULATIVE ROW ADJUSTMENT
.875 .095 .639 .914 .190 1.000 .577 .964 1.348 1.283 1.289 1.000 .820 1.522 1.691 1.188 1.188 1.188 .910 .966
 .9KE .674 4.418 .0DP .464 .724 .466 .471 .465 .8D8 1.978 .068 .947 3.783 2.136 2.158 .442 .456 .415
1.926 1.926 2.040 1.951 .685 .685 3.392 1.555 3.391 1.225 1.124 1.124 .891 .891 1.070 1.013 .382 1.036 1.036 2.536
CUMBLATIVE COLUMN ADJUSTMENT
 .530 .988 1.662 .831 1.244 .462 .294 .696 .983 .527 .926 .944 .905 .911 1.416 .556 1.137 1.131 .582 1.143
1.052 1.051 1.503 1.653 .339 1.606 1.228 .329 .964 .455 1.008 1.016 .998 .988 1.018 1.023 1.056 .948 .686 1.059
1.057 1.063 1.120 1.186 .971 .955 .378 .354 .938 .926 .946 .930 .946 1.090 .902 .935 1.263 .959 .935 1.204
1.033 1.007 1.007 1.391 1.330 .371 1.651 1.171 1.626 1.031 .935 1.064 1.064 1.080 1.114 1.008 1.008 .828 1.093 .448
 .123 .410 .622 .717 1.514 1.600 .753 1.696 1.000 1.381 1.240 1.327 2.084 1.369
        E AL ANC
```

PAL LNT