1 d

BuctLor | | Km%;%

DETAILED DESCRIPTION OF THE
MARYLAND INTERINDUSTRY FORECASTING PROGRAM

The Maryland Interindustry Forecasting Program consists of thirteen
symbolic decks written in Fortran V but kept as close as possible to
Fortran IV. The Program reads the data, computes the forecasts, and
prepares three types of reports: (1) the general report, which is
printed as the forecast is made and amounts to a disaggregation of
the national accounts, (2) the matrix listing showing the sales, in
selected future years, of each seller to each buyer, znd (3) plots
of the forecasts related to historical series of the same items.

In what follows, we will trace the development of the forecasts
through the statements of the Program. We will go through the
program twice, once in general terms to see the whole structure
quickly and then a second time to observe the details and instruct
the reader in operating the Forecasting Program.

The main or starting deck is named RUN. It performs no computations, ’ //
Its function is to call the subroutines in the proper order. RUN

divides the program into three distinct parts: the reading routine,
the forecasting program, and the editing routines. The first part
calls the READER subroutine and thcoreby introduces into the active
memory of the computer most of the data necessary for forecasting.

The second forecasting part (the DO 20 loop.*) calls the subroutines
necessary to calculate the forecast for one year. The program passes
through these calls once for each forecast year. Each pass calls
seven subroutines, in this order:

POLYLG - Lagrangian polynomial interpolation
EX0G - exogenous demand

CONDEM - consumer demand |

INVEST - equipment investment demand‘
CONSTR - construction demand .

IOCOMP -~ input-output computations’

EMPLOY - employment computations

* (DO loops will be referred to repeatedly in this way; this reference
indicates the series of FORTRAN statements beginning with "DO 20
I=1, NP and ending with the statement numbered 20.)

-2 -

POLYLG-~pronounced Polly Lagrange--computes five vectors of interpolation
weights. EXO0G, CONDEM, INVEST, and CONSTR (read ‘Construct’) compute,
print, and store on tapes the vectors of the components of GNP. IOCOMP
then converts the total final demand vector into a vector of industry
outputs and EMPLOY transforms the outputs into a vector of employment

by industry; outputs and employment are printed. In addition to the
printed output, these subroutines create two files (tapes on a 7094)
which are used by the editing routines. To forecast years 1965 to 1980
requires executing the entire sequence sixteen times.

The last part of RUN calls two editing and plotting subroutines if they
are desired. To get a listing of the interindustry sales matrix for
five forecast years, we call MATLIS (matrix list). MATLIS reads one

of the files created in the forecasting part and calls SCRIVO subroutine
to write the desired matrices. Back in "RUN we look to see whether
plots are desired; if so, we call TRIGRA (pronounced tri-graph, so
named because it can plot the output, employment, and investment graphs
on the same set of axes). TRIGRA reads the other file created by the
forecast program and also the cards carrying the historical data; it
links the history to the forecast in each series and calls PLOTER to
plot the graphs. The program is then completed.

READER

Let us now return to the beginning of RUN to analyze the program in

more detail. RUN immediately calls READER, which then rewinds units

10 and 11. TUnit 10 must be a tape drive:; unit 11 may be a tape (as

on the 7094) or may be a file on a drum (as on the 1108). With this
business accomplished, we come to three READ statements, which read

in five cards. From the first we take the TITLE for that particular
run, e.g. "JUNE 12, 1968 VERSION". From the next three we take the
values of seventeen control variables, among them NP (number of periods),
NS, the number sectors, IPLOT, which is 0 if no plots desired and other-
wise i, and LIRTAP (meaning to read tape; it is 1 if we want to take
data for forecasting from tape 10; 0 if we will read all data from
cards). From the fifth card we read the values of ITAPE. ITAPE(I)

is 1 if we want to store the complete forecast for the I-th year on

unit 11; otherwise it is 0. The purpose of unit 11 is to provide

the data necessary for listing the matrices; subroutine MATLIS will

read this unit. However MATLIS is limited to a maximum of five years'
matrices; therefore, if more than five elements of ITAPE are set to 1,
all of the corresponding forecasts will be saved on 11, but only the
first five years' data on that tape will be read and printed by MATLIS.

Just below statement 4 we find a test on LIRTAP. We shall assume
that LIRTAP is 0, as it is in the decks as supplied. What happens

-3 =

when LIRTAP is 1 will be explained later. We go therefore to statement
6. Here we find a short loop which may appear puzzling at first. It
sets thousands of values of IEQ equal toc zero. If we look in the

third card of the Cormon statement above, we see that IEQ has only

34 elements, but stands near the beginning of Jommon. The effect of
this loop, therefore, is to sat most of Ccmmon equal to zero. The
items at the end of Common are not data but working space;, and so need
not be zerced.

Beginning with statement 8, we read a number of arrangement codes
whose significance need not detain us. But note that these codes
must be in the proper order.

Now we come to the heart of READER, the loop that goes from statement

9 to the statement below 70, which says GO to 9. This loop reads all
of the basic data and puts them in their right places in Common. The
order in which the data occurs does not matter. (There is one exception
to be mentioned below). This release from strict order is an enormous
convenience in working with the program. The matrix or vector to
which each card pertains is indicated by a two-digit number in columns
1 and 2. For example, a code 12 means that the card has on it elements
of the A matrix; code 15 indicates that it relates to exports. State-
ment 9 reads this code number into WCODE and then reads five fields,
each consisting of two integers (a row number and a column number)

and a real number (the coefficient in that row and column of the matrix
indicated by NCODE). Suppose NCODE is 15; how do we get the inform-
ation where it belongs?

First we test to see if NCOPE is 99:; if it is, we have read all the
data and skip down to 100 to attend to other business. With NCODE =
16, the next IF sends us to 10 where we subtract 10 from NCODE and
initiate a DO 70 K=1,5. The 5 is for the 5 fields on the data card.
First we move the row number into I and test for a zero; if we find
it,we assume the field is blank and go on to the next field. If I is
positive, we put the row number into J and the coefficient into C and
execute a long computed GO TO statement on NCODE. Since NCODE was
read as 15, after subtraction of 10 it is 5. Notice that the fifth
prong of this GO TO is 15. Therefore we go to statement 15 and put
out coefficient, C, into row I, column J of the EXPORT matrix. Then
we go on to the next field. HNote that the statement number to which
we go on the computed GO TO is the same as NCODE on the card. This
identity holds for all values of NCODE less than 31. It makes READER
an index of the data codes. When we have put in place all elements
on one card, we return to 9 to read another.

-4 -

Most of the NCODE's are handled just that simply. A few, however,
get special treatment. They zare:

Code Treatment

11 These cards define the conversion from consumer categories
to I-0 sectors. For each element, I is the number of a
consumer category, J is the number of an I-0 sector, and
C is the fraction of category I assigned to sector J.

The program counts, in I11, the number of such Conver-
sion factors and stores them in CONV in the order in which
they are read. At the same time, it packs the I and J
together in one word and stores it in ICONV. These
vectors are used in the D085 loop of Subroutine CONDEM,

13 These cards introduce coefficient changes in the inter-
industry flow matrices. First we look to see whether
there is already a change recorded for the element
specificd. If so, we replace it; if not, we add an
element. 1I13 counts the number of such changes. On
the cards, the yearly change is expressed in percent
of the base year coefficient. READER converts these
into absolute numbers. Columns 1-200 refer to the A
matrix, columms 201-300 refer to the construction matrix,
and columns 401-511 refer to the capital equipment
matrix. The absolute change is stored in ADEL, and
the row and column numbers to which the change refers
are packed into the corresponding element of IADEL.

30-39 All of these codes refer to construction equations.
The value of NCODE indicates the type--e.g. 30 is
an exponential trend, 31 is a stock adjustment equation.
Seven lines below statement 9, the value of NCODE is
recorded in KSTYP(I) (read--construction type) and
NCODE is changed to 30.

40-49 : The codes designate different types of equipment
investment and are treated essentially like the
codes 30-39. One wrinkle is added: instead of
having to make our cards with a special set of numbers
for the equipment investment eguations, we use the I-0
number of any sector in the equipment~buying group,
and the program makes the conversion.

50 These are cards for handling special final demands.
Comment cards below statement 501 describe their
functioning.

When all of the Common data have been read, the all-9 card is found
and the IF just below statement 9 sends us to statement 100. Here we
write the contents of Common (except for the data on the first five
cards) onto the tape on 10. Next time we run the program, we change
LIRTAP (on the 3rd data card) to 1. Then the IF statement below
statement 4 will fail and, instead of clearing Common to zero, we
read back in what has been written on tape 10 on the first run. We
have to submit only és many of the cards between ITAPE and all-9 as
we want to change.

When tape 10 is written, the 111 and I13 count is printed. This
count must be transferred into the appropriate columns of the 3rd
data card for running without the 11 and 13 data. On the other hand,
when all of the 11 cards are present, Ill must be 0 in the 3rd card.

Control now returns to RUN and RUN calls POLYLG.

POLYLG

As soon as RUN has defined T; the number of the year being fore-
cast (beginning with T=1 in 1965), POLYLG is called. This modest sub-
routine produces no printed output of its own, but prepares the way
for others by computing Lagrangian interpolation weights. These
weights provide an extremely convenient method of specifying exogenous
variables. We simple specify the value of the function for a few
future years, and the program interpolates on a smooth curve between
them. Suppose we specify three values, Vis Vg and'V3, of some variable
V for, let us say 1966, 1970,'and 1975. We call these years the inter-
polation points, tl’ ty, and ts. Lagrangian interpolation requires us

to find three second degree polynomials, wl(t), wz(t), and w3(t), such

-6 -

that the polynomial p(t) = wl(t)vl + wz(t)v2 + w3(t)v3 will have the

for t equal to t t,, and t

3 1’ 72 3

The wi(T) are called Lagrangian polynomials. The theory of these

values Vs Vo, and v , respectively.

polyanomials is simply explained in a three-point example. Suppose

we know v(t) at tl, t2, and t_ . Lot us define

3 .
1 for t=t
w,(t) = (t-t)) (t-t3) =40 for t==t2
(tl~t2)(t1~t3) aQ for t=t3
0 for t=t
t-t,) (t-t
wz(t) = (1)(3) = 41 for t=tl
(tz"tl)(tz"tB) 0 for t=t§
and
L 0 for t=t
w, (£) = (et (e=t)) _ 1 for t=t;
(t3—t1)(t3—t2) 1 for t=t3

By virtue of the equalities shown cn the rizght, we see that

p(t) = wl(t)vl = wz(t)v + w3(t)v3

2

is a second degree polynomial with the required values Vl’ v2

. The generalization to more than three points is

, and V3

at tl, t2’ and t3

immediate and is embodied in the Fortran of POLYLG.

POLYLG calculates the values of these Wi(T) for the given value of

T. MNaturally, the values of the wi(T) depend on the interpolation points:

the wi(T) for interpolating from points in 1966, 1969, and 1975 differ
from those for interpolating from points in 1967, 1972, 1975, and 1980.
Both the number and the spacing of points may vary between different
patterns. Each column of TINTER contains a different interpolation
pattern. The first element in the column is the number of points in

the pattern. Then there follow from 2 to 4 year numbers of the

-7 -

interpolation points. In these numbers, 1965 is year 1. Thus the
pattern 1966, 1970, 1975 would appear in a column of TINTER as

3 2 6 i1,
The weights for each pattern arc calculated for the current value of

T and stored in POLY for use by other subroutines.

EXOG

‘Before this subroutine is called, RUN prints the heading for the
first page of output and sets ITR equal to 1 if we are in one of the
five years which we want to use in the matrix li-ting.

EXOG firsts clears the space, FD, in which the final demand will
be accumulated. First, exports are calculated from exponential trends
and put into FD while their sum goes into the appropriate'spot in the
GNP account. Then the transferred (= competitive not sold directly to
final demand) imports are treated similarly. Note that both are written
‘onto unit 11 if the current year is desired for the matrix listing.

Between the comment "Calculate Defense Spending' and statement
38, we find provision to read in the defense vector in the first four
vears. Beyond that time, it is interpolated from the data found in
the first three columns of the GOV matrix using the ihterpolation
pattern found in the fourth column of TINTER as reflected in the
current weights in the fourth column of POLY.

Regérdless.of where the vector came from, 38 sums it for the GNP
account and adds it to FD.

Next we calculate special project final demands. This section

of the program was added to be able to give, within limited core space,

-8 -

considerable flexibility in specifying the time path of the demands
of special projects or assumptions which affect directly only a few
(less than 15) products.

Statement 137 moves the present value of Disposable Income Per
Capita, DISPC, into DISPCL, its lagged value. .

In the first three years, we read in the values of DISPC, POPUL-'
ation, the labor force, WORKRS, state and local expenditures except
for employees and construction (into CNP(7)) and then the same for
Federal non-defense (into GNP(9)) and then employment of domestic
servants and government workers, including military. Next, we read
in equipmemt investment by purchases (Vz,construction by type (Sz)and
consumer purchases per capita. In the first year, we read the industry
outputs in the previous year. These are used only in the inventory
equations.

If the total material purchases of State and Local governments and
Federal Non-Defense were not read in, they are interpolated in Stafement
44-45. Sinmilarly with exogenous employment, Statements 80-90 distribute
these totals to the supplying industries in fixed proportions. Then the
statements following 70 add the contributions of exogenous employment
to appropriate parts of the GNP accounts.

Next comes the calculation of a number of exogenous variables used
elsewhere in the program. In the first years, these were read in on

Format 42 above, or are not needed. POPUL was read in; HONEY, defined

by

Cash flow (T) /Cash flow (1)
Sales (T) Sales (1)

HONEY (T) =

-9 -

is used only in the investment equations. Since V is read in for the
first years, HONEY is not needed.

After these variables come the changes in the coefficient matrix.
They are made in all years except the first.

Control then returns to RUN and RUN calls CONDEM.
CONDEM

This subroutine has two functions, first to calculate per capita
consumer expenditures by consumer categories (CONPUR) and second to
multiply them by population and allocate the categories to the I-O
industries. In the first years, CONPUR was read in EX0G, so we go
directly to the second function. If the first function must be per-
formed, we go through the NCS consumer categories and, for each,
first calculate by interpolation the relative price. Then we test
to see whether the income coefficient of the consumption equation
is zero. If it is, we know that we have simply an exponential trend
lin that item. Otherwise we go to statement 30 and apply the standard
formula. All the variables in it are familiar except perhaps DELDPC,
the first difference of DISPC, which was calculated in EXOG.

We then come to the second half. The DO 75 loop multiplies
by population. DO 80 clears X to receive the converted demands, and
DO 85 performs the classification conversion. Compare the unpacking
of ICONV with its packing in READER; recall that integer division
truncates the answer. The number 512 is used iﬁ packing because it

is 1000 in octal. After conversion, consumption is added into FD

- 10 -

and summed in the appropriate GNP account, Finally, CONPUR is con-
verted back to a per capita basis for the benefit of the categories
generated by expomential trends. Control then returns to RUN, and

RUN calls CONSTR.

