Bayesian estimation of a consumption system

Jakub Boratyński

University of Łódź jakub.boratynski@uni.lodz.pl

This work was supported in part by the World Bank under the project "Poland: CGE Model for Labour Market and Fiscal Reform".

< □ > < 同 > < 回 > < Ξ > < Ξ

28 August 2018

1/21

Why Bayesian approach?

- Handles problems with many parameters and little data.
- Allows for explicit formulation of prior knowledge.
- Shows how prior assumptions are updated by the data.
- Provides full account of uncertainty of the estimates.
- Single estimation strategy for a wide varety of models, including simultaneous equations.
- Allows straightforward handling of latent variables.
- Computationally feasible nowadays.

(I) < (II) <

The cost compared to other approaches

- Requires full and explicit stochastic specification of the model.
 - Defining the likelihood function (sampling distribution).
 - Formulating prior knowledge (uncertainty) about model parameters in terms of probability distributions.

< □ > < 同 > < 回 > < 回 > < 回 >

An alternative: Generalized Maximum Entropy

- Generalized Maximum Entropy / Generalized Cross Entropy (GME/GCE) approach introduced by Golan, Judge and Miller (1996).
- GME/GCE: "Robust estimation with limited data".
- Serious drawback: prior assumptions cannot be incorporated in a straightforward way.
- Heckelei, Mittelhemmer and Jansson (2008) demonstrated that seemingly uniform prior formulation actually imposes an informative prior; the authors proposed a Bayesian alternative.

イロト イヨト イヨト

Bayesian estimation: my previous attempts

- Matrix balancing estimating a bridge matrix between NACE Rev. 1.1 and NACE Rev. 2 (published in CEJEME, 2016).
- Estimation of fixed capital stocks and depreciation rates (work in progress).
- Current work at an early stage!

How it works

- Linear regression model: $y_t = \alpha x_t + \varepsilon_t$, where $\varepsilon_t \sim Normal(0, \sigma)$.
- Equivalent to: $y_t \sim Normal(\alpha x_t, \sigma)$.
- Likelihood function: $L(\alpha, \sigma; y) = \prod_t normalpdf(y_t | \alpha, \sigma)$
- Maximum likelihood: find α and σ that maximize L.
- Bayesian: we want to look at L for all possible values of α and σ .
 - $\bullet\,$ Then e.g. calculate marginal distribution for $\alpha.$
- Prior dsitribution provides additional weigthing.
- Posterior distribution: $p(\alpha, \sigma | y) \propto L(\alpha, \sigma; y) \cdot p(\alpha, \sigma)$.

Linear Expenditure System (LES)

- Also known as Stone-Geary or Klein-Rubin model.
- Restrictive assumptions but relatively few parameters.
- Still widely used, e.g. in the Computable General Equilibrium (CGE) field.
- Good grounds for testing the estimation method.

Linear Expenditure System formulation (1)

$$C_t \cdot w_{it}^* = \gamma_i \cdot p_{it} + \delta_i \left(C_t - \sum_j \gamma_j \cdot p_{jt} \right)$$

- w_{it}^* : predicted budget share of good *i* in total consumption.
- C_t: total nominal consumption expenditure.
- pit: price of good i.

Estimated parameters:

- γ_i : 'subsistence' consumption of good *i*.
- δ_i: budget share of good i in 'non-subsistence' consumption (marginal budget share), where Σ_i δ_i = 1.

Linear Expenditure System formulation (2)

- Parameters γ_i and δ_i can be used to derive income and price elasticities.
- Income (total expenditure) elasticity: $EC_i = \frac{\delta_{it}}{w_{it}^*}$
- Own price elasticity: $EP_{it} = \frac{1-\delta_i}{w_{it}^*} \cdot \frac{p_{it}\gamma_i}{C_t} 1$

< □ > < 同 > < 回 > < 回 > < 回 >

Stochastic specification

Based on Osiewalski (2001):

$$w_{it} = w_{it}^* (p_t, C_t, \gamma, \delta) \cdot \varepsilon_{it}$$

- where *w_{it}* are the observed budget shares.
- Joint probability distribution is assigned to w_t vector directly.
- That distribution must satisfy: $\sum_i w_{it} = 1$.
- Common options: Dirichlet, Additive Logistic Normal (ALN).

The full model

$$w_{it}^{*} = \frac{1}{C_{t}} \left[\gamma_{i} \cdot p_{it} + \delta_{i} \left(C_{t} - \sum_{j} \gamma_{j} \cdot p_{jt} \right) \right]$$
$$w_{t} \sim ALN \left(w_{t}^{*}, \Sigma \right)$$

 $\Sigma \sim \textit{SomeNonInformativePrior}\left(\ldots\right)$

 $\gamma_i \sim Uniform(\ldots)$

 $\delta \sim \text{Dirichlet}([1,\ldots,1])$

• The above formulation is slightly stylized, but model coding follows it closely.

イロト 不得下 イヨト イヨト 二日

28 August 2018

11/21

Software: Stan

- Programming language for Bayesian inference with MCMC sampling.
- Open source, active user forum.
- Interfaced with R, Python, MATLAB, Stata, etc.
- Available at mc-stan.org

< A > < E

Data for Poland

- Eurostat: consumption expenditure by COICOP.
- 12 COICOP groups, annual, 2000-2016.
- Data categories used in the estimation:
 - Consumption in current prices.
 - Consumption deflators.

Prices of consumption goods, 2000=1

28 August 2018 14 / 21

Consumption in constant prices, 2000=1

Subsistence consumption of food (γ_1) : samples from prior an posterior distributions

28 August 2018 16 / 21

< A > < E

Marginal budget share of food consumption (δ_1): samples from prior an posterior distributions

Income elasticities (at 2016 income and price levels)

Transport

Restaurants & Hotels

э

28 August 2018 18 / 21

Own price elasticities (at 2016 income and price levels)

28 August 2018 19 / 21

Posterior means of the elasticities

Good	Income elasticity	Price elasticity
Food	0.34	-0.23
Alcohol & Tobacco	0.66	-0.39
Clothing	1.55	-0.85
HousingEnergy	0.85	-0.57
Household	1.32	-0.73
Health	1.42	-0.79
Transport	1.34	-0.77
Communications	1.17	-0.65
Recreation & Culture	1.19	-0.68
Education	0.58	-0.32
Restaurants & Hotels	0.89	-0.50
Miscellaneous	1.44	-0.83

- LES: allowing for a time-varying subsistence consumption.
- Switching to more flexible demand systems, e.g. PADS.

3

< □ > < 同 > < 回 > < 回 > < 回 >