26th Inforum World Conference Łódź, Poland, August 27-31, 2018

Inclusion of a New Economic Activity into a Multisectoral Model: Nuclear Power in Poland (work in progress)

> Mariusz Plich University of Lodz

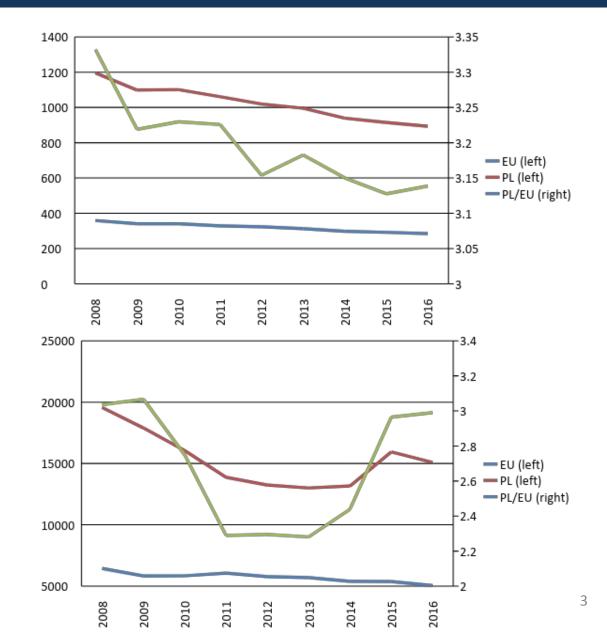
Scientific work carried out within the Coordinated Research Project of International Atomic Energy Agency co-financed from the funds for science in the years 2016-2019 by the Polish Ministry of Science and Higher Education

Outline of the presentation

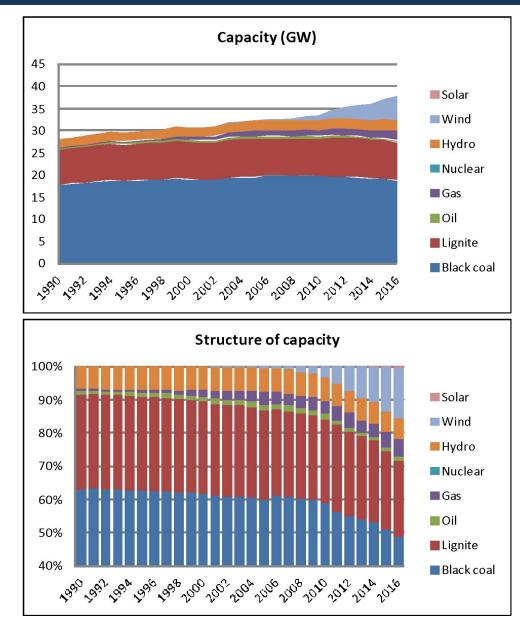
- Background
- Empower and extensions:
 - model
 - software
- Empower.cc
 - new activity
- Scenarios of energy mix
- What next

GHG emission intensities in NACE sectors

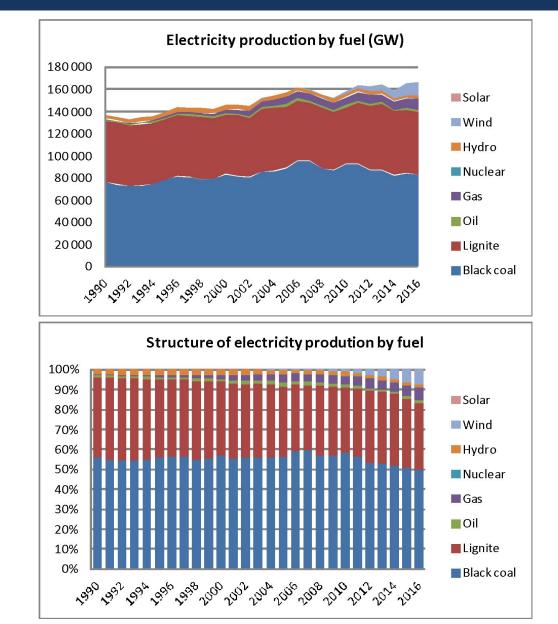
Greenhouse gases:


- CO2

- N2O


- CH4

in CO2 equivalent


Source: Eurostat database (file env_ac_aeint_r2)

Gross installed capacity in Polish power plants

Electricity prduction by fuel in Poland

Polish Nuclear Power Programme (PNPP)

1982-1989: Construction of first Polish NPP (Żarnowic 1600 MW)

- 2009 : Start preparation for a new nuclear power program
- 2014: Realease of Polish Nuclear Power Programme (PNPP)

Table. Assumptions of the PNPP concerning the construction of a nuclear power plant

Issue		Assumptions of the <i>Polish Nuclear Power Program /</i> problems of modeling					
When		2020	20 2024 20		2035		
Power (in MW)		0	>= 1000	>= 3000	<= 6000		
Technology		No					
Share of Polish in funds		10%	30%		60%		
Construction	Power station 1 (3000 MW)		nln USD/MW PLN)				
costs	Power station 2						

Source: own elaboration based on PNPP 2014

Genesis of the model

IAEA: International Atomic Energy Agency

CRP I12005: Assessing the National and Regional Economic and Social Effects of Nuclear Programmes (2014-2017)

Tool of assessment: mathematical model

Preconditions of model construction...

- empirical implementation
- one scheme for different countries
- common, easy and cost free software

...forced simplifications of model in:

- analitical form
- size
- speed and method of solving

Empower: *Extended Input Output Model for the Nuclear Power Plant Impact Assessment* Consists of:

- equation system which use econometric input-output approach
- software as a set of MS Excel templates and VBA procedures

Equations

Output (in nominal terms) $\mathbf{x} = \mathbf{A}^{d}\mathbf{x} + \mathbf{c}\mathbf{p} + \mathbf{f}^{new}$ (1)	Wages $w = \exp(const_w + \beta_{ur}\log(1 - L/LF))$ (6)
Output (in real terms) $\mathbf{x}^{r} = \mathbf{x}/\mathbf{p}$ (2)	Wages $w = \exp(const_{w} + \beta_{ur}\log(1 - L/LF))$ Unit labour costs $\mathbf{l} = \mathbf{l}_{base} w/(0.5 * w_{base} + 0.5 * w)$ (6) (7)
$VD = \int (1 + i) + (1 + i) + VD$	Prices $\mathbf{p} = \mathbf{p}\mathbf{A}^{d} + \mathbf{p}^{m}\mathbf{A}^{m} + \mathbf{l}w + \mathbf{s} + \mathbf{t}^{q}$ (8)
Consumption (4) $\mathbf{cp} = [\exp(const_{cp} + mpc(\log(YD))]\mathbf{b}_{hh}^{d}$	Tax rate (9)
Employment: (5) $L = \mathbf{l}\mathbf{x}^{\mathbf{r}}$	$t_{hh}^{new} = \frac{r_{pub} i' \mathbf{f}^{\text{new}}}{YD}$

Four types of multipliers

- direct and indirect effect (equations 1 i 2)
- & induced effect (equations 3 i 4)
- • & labor market response (equations 5-8)
- ••• & feedback from financing of investments (equation 9)

Variables and parameters

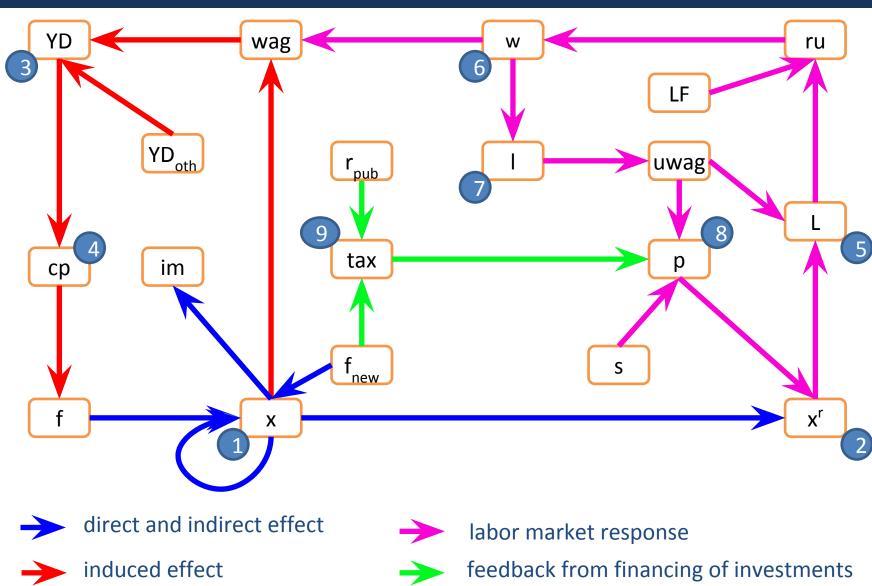
Symbols used:

- x output;
- cp household consumption;
- f final use (excluding household consumption);
- p output prices;
- w wage rate (wag/L);
- YD disposable income (after tax);
- YD_{oth} non-wage income;
- L employment;
- LF labour force;
- t_{hh}^{new} revenue-neutral tax rate.

Symbols written with variables in the upper or lower index:

- r = in real terms;
 - domestic;
- ^m foreign,
 - original data;
- ^{base} in base year.

Parameters:


- unit employment (L/x);
- s unit operational surplus;
- A Matrix of input-output coefficients;
- t_{hh} household tax rate;
- $\begin{array}{ll} f_{s,hh} & \mbox{- coefficients for harmonization wages in} \\ & \mbox{i-o tables and NA;} \end{array}$
- $\begin{array}{l} f_{w,hh} \mbox{ coefficients for harmonization wages in} \\ \mbox{ i-o tables and NA;} \end{array}$
- const- constant term;
- mpc-marginal propensity of consumption;
- β_{ur} parameter of wage response to unemployment rate.

Other symbols:

- log natural logarithm;
- exp exponential function;
- i unit vector;
 - symbol of transposition;

vectors are marked in bold

Block diagram of Empower model

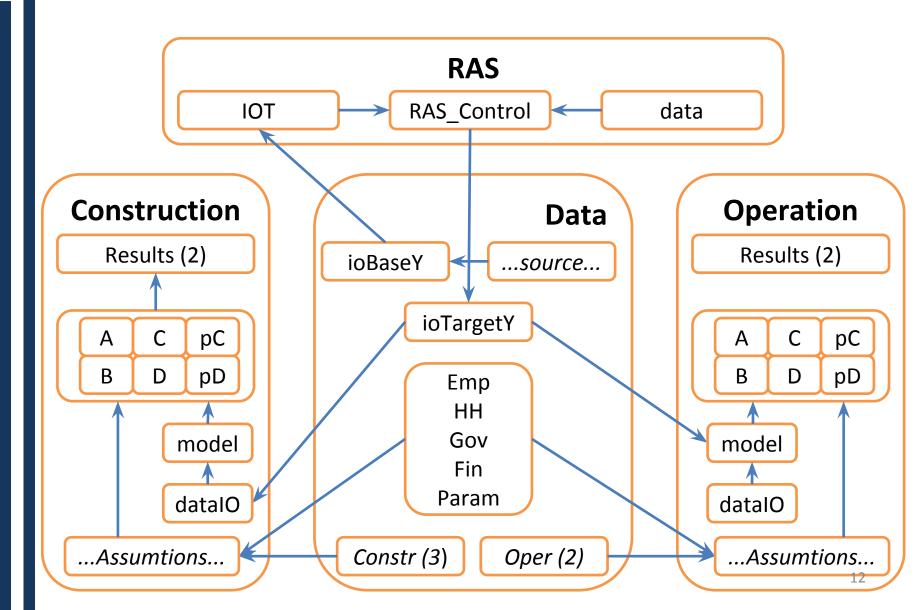
Use

Base solution

- assumed rates of output changes + RAS
- state of equilibrium

Scenarios: disturbance of equilibrium state

- construction: additional investment outlays distributed over time
- operation: changes of unit cost of energy production as the result of structural chages of electricity supply


Variants of simulations

- A direct and indirect effect
- B & induced effect (A+B)
- C & labor market response (A+B+C)
- D & feedback from financing of investments (A+B+C+D)

Leontief model in current prices?

- Dietzenbacher&Temurshoev (2012): "(...) we found that all predicted effects were very similar."
- Predictions of i-o table in current prices using RAS?

Diagram of software

Implementation dilemmas

Weaknesses of Empower software

- not user friendly
- no links between files
- construction and operation separated
- low speed of solving model
- no loops over years

An alternative software: Interdyme

Project

 CRP I12006: Assessments of the Potential Role of Nuclear Energy in National Climate Change Mitigation Strategies (2016-2019)
 General project objectives for Poland:

- A. Evaluation of the extent PNPP contributes to meeting national targets of GHG reduction
- B. Development of generic analytical framework for the assessment of support mechanisms to address investments in low carbon technologies, including nuclear Expected results
 - Empower.cc model and software as spreadsheet templates and VBA procedures
 - Empower.cc.pl the Empower.cc implemented for Poland both in spreadsheet and Interdyme

Problems to solve:

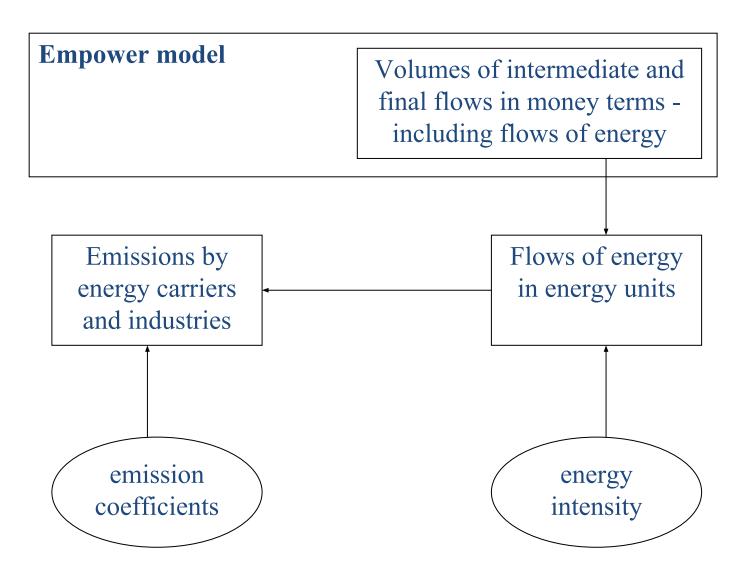
- 1) Introduction of energy and emission block of equations
- 2) Changes of unit costs of electricity production
- 3) Scenarios of energy mix

Extension to climate change mitigation

The proposed new features of model

New blocks of equations

- energy block (demand for energy by sector and fuel type)
- emissions block (GHG emissions as the result of energy transformation processes)


Total emission of any pollutant under consideration depends on two factors:

- emission coefficients (emission per unit of energy)
- amount of a fuel use (demand for a fuel)

Factors of changes of emission coefficients for a fuel

- the combustion method (differs between sectors)
- the pollution abatement method at the "end of pipe"

Empower.cc Flow chart of Empower.cc model

General form of emission equations

Emission of polutant z by industry j $E_{zj} = e_{zj}X_j$

where

e - direct emission coefficients
$$(e_{zj} = \frac{E_{zj}}{X_i}),$$

X – output	
E – emission in nat	tural units
z – type of polluta	nt $(z = 1, 2,, Z)$
<i>j</i> – sector number	(j = 1, 2,, J)

Total emission of pollutant z

 $E_z = \sum_j e_{zj} X_j$

Vector of total emissions of Z different pollutants $\mathbf{E} = \mathbf{eX}$

where

E – vector of emissions $(Z \times 1)$ **e** – matrix of direct emission coefficients $(Z \times J)$ **X** – vector of output $(J \times 1)$

Leontief production function

$$\begin{split} \mathbf{X} &= (\mathbf{I} - \mathbf{A})^{-1} \cdot \mathbf{Y} \;, \\ \mathbf{E} &= \mathbf{e} \cdot (\mathbf{I} - \mathbf{A})^{-1} \cdot \mathbf{Y} \end{split}$$

Equations of air pollution from fuel combustion

Emission E_{zj} - emission of type z by sector j from use of fuel f:

$$E_{zj} = \sum_{f} E_{zjf}$$
 or
$$E_{zj} = \sum_{f} e_{zjf} \cdot X_{j}$$

where f means type of fuel (f = 1, 2, ..., F)

or

where:

 $w_{zif} = \frac{E_{zif}}{U_{fi}}$

$$E_{zjt} = \left(\sum_{f} w_{zjf\,0} \cdot v_{(f)j0} \cdot a_{(f)jt}\right) \cdot X_{jt}$$

for

$$(z = 1,...,Z)$$
 $(j = 1,...,J)$ $(f = 1,...,F)$ $v_{(f)j} = \frac{U_{fj}}{x_{(f)j}}$

emission of pollutant z per unit of fuel f in sector j,

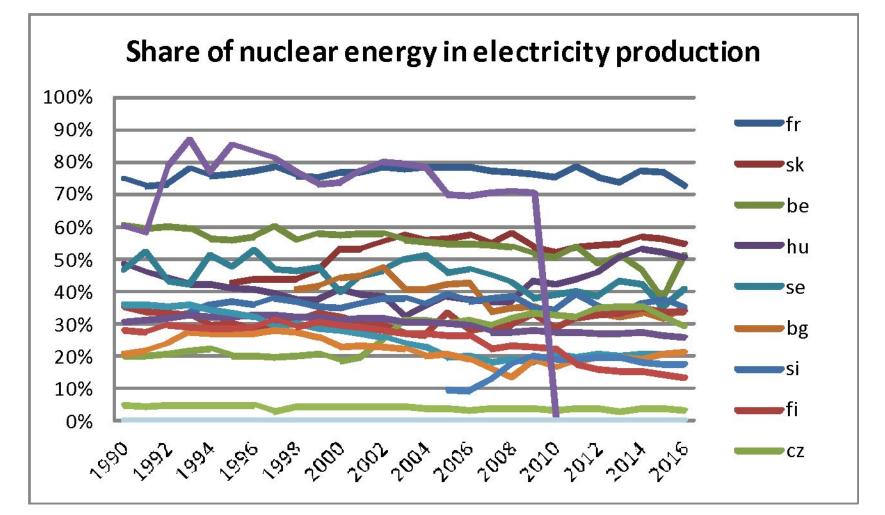
unit input of fuel f generated by energy sector (f) in sector j

$$a_{(f)j} = \frac{x_{(f)j}}{X_j}$$
 direct input coefficient of products generated by
energy sector (f) in sector j

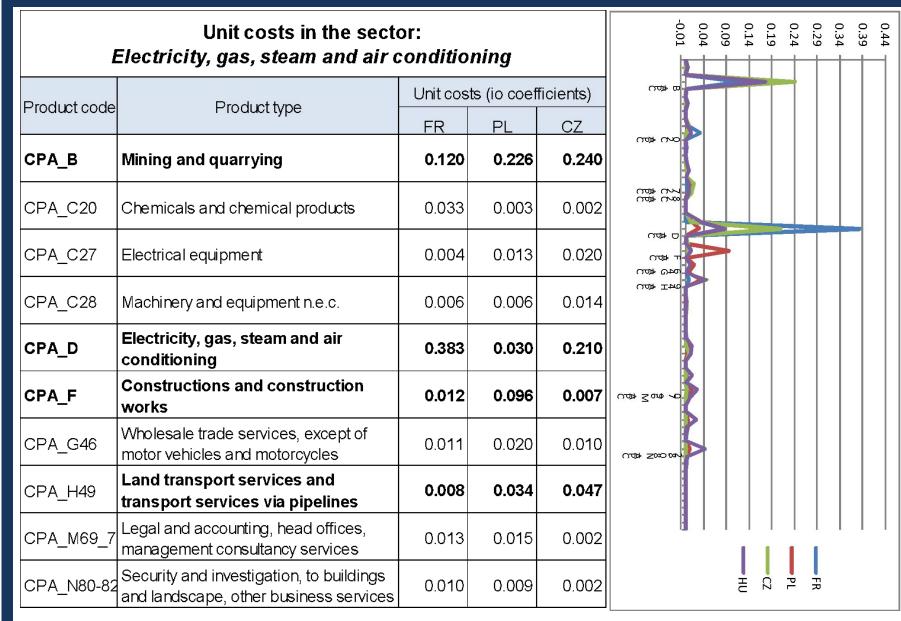
Unit costs of electricity sector – IEA data

Unit costs of nuclear power technology

- Maping from IEA data to io table (used in Empower for now)
- Use io data from countries with high share of nuclear power (France)


Type of cost		Wind/ solar	Gas	Coal	Oil products	Nuclear	Hydro power
Mining and Quarrying		0	84	43	0	0	0
Coke, Refined Petroleum and Nuclear Fuel		0	0	0	84	10	0
Other operational costs		25	6	8	6	10	20
Labour cost		11	3	4	3	4	7
Subsidies/Taxes		?	?	?	?	?	?
Capital		?	?	?	?	?	?

IEA: Costs of Electricity Generation (USD/MWh)

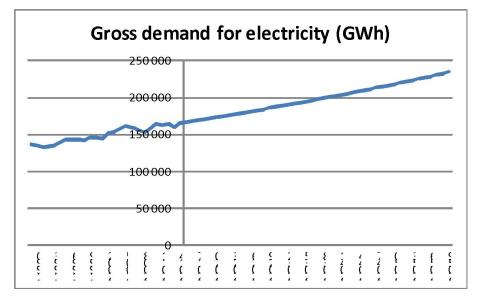

? - country data or estimates

Shares estimated on the base of this table corespond to io coefficients (unit costs in io table): **mapping can be done**

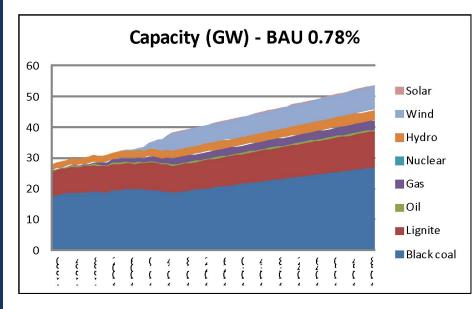
Unit costs of electricity sector - iodata

Unit costs of electricity sector – io data

Factors of energy mix

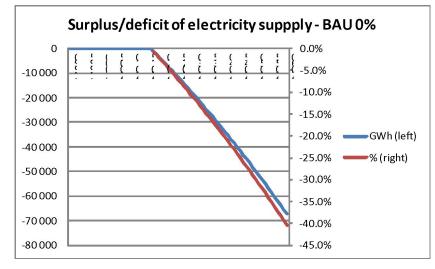

Energy mix: technologies used to meet demand for electric power

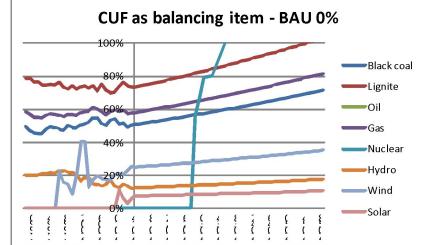
Technologies : coal (black coal and lignite), oil, gas, nuclear, hydro, wind, solar


Factors of energy mix used to build scenarios

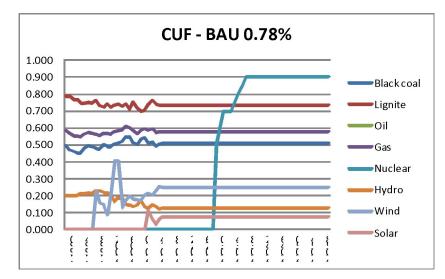
- Gross demand for electric power
- Production capacity by technologies
- Capacity Utilization Factors (CUF) by technologies

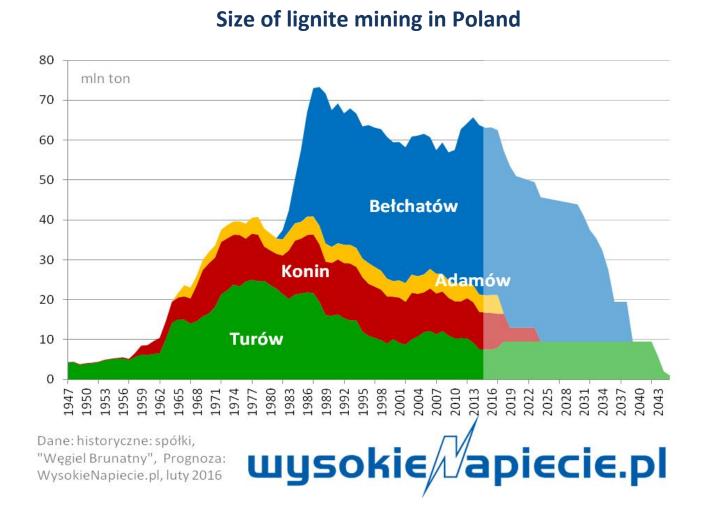
BAU scenario



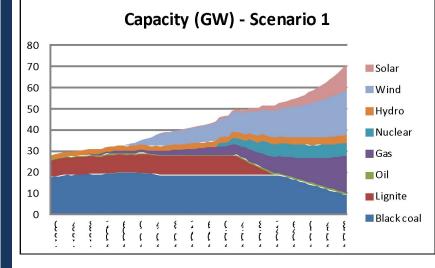

Average growth rate of demand 1990-2016: 0.78%

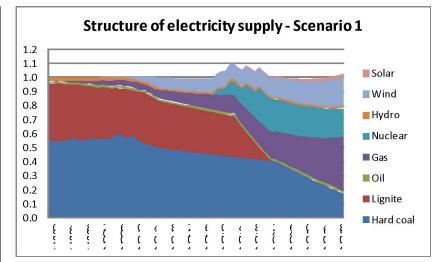
Production capacity grow at the rate of demand

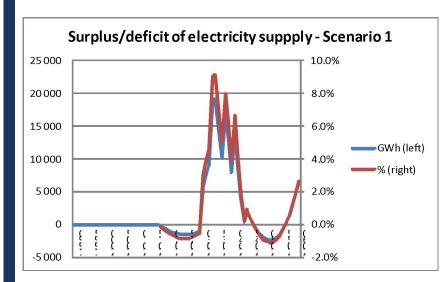

BAU scenario

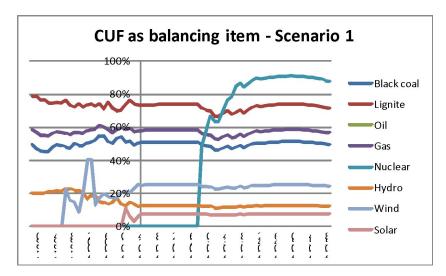


Capacity utilization factor depends on:

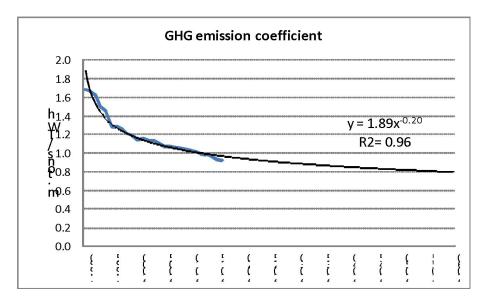

- technology
- role of power plant in energy system (base load, peak load)
- Changes of CUF are used to balance demand and supply

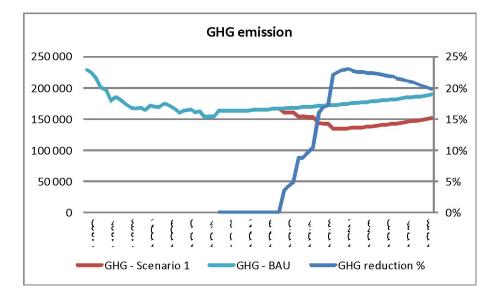



Scenario 1



Scenario 1





Scenarios of energy mix Scenario 1 – GHG reduction

What's next? Software, model, simulations

- 1) Empower.cc software development energy and emission block
- 2) Model implementation installing energy and emissions block in Empower.cc and Interdyme
- 3) Preliminary simulations on the role of NPP in climate change mitigation
- 4) Further model development real and nominal side of the economy
- 5) Final simulations