

26th Inforum World Conference Łódź, Poland, August 27-31, 2018.

Modeling of Sectoral Investment for Poland

Jurand Skrzypek, MSc, Department of Social-Economic Analyses, Institute of Economics, Finance and Management, Faculty of Management and Social Communication, Jagiellonian University in Cracow

email: jurand.skrzypek@uj.edu.pl

© Jurand Skrzypek, IEFiZ UJ

Outline

- 1. Introduction
- 2. Investment demand function variable selection
- 3. Problems related to the database building
- 4. Statistical analysis of the sectoral investment
- 5. Estimation results sectoral investment models
- 6. Investments in the energy sector facts, ideas, threats
- 7. Summary and directions of further research

1. Introduction

Investments play a major role in many areas of the economic life... for example:

FMPLOYMENT

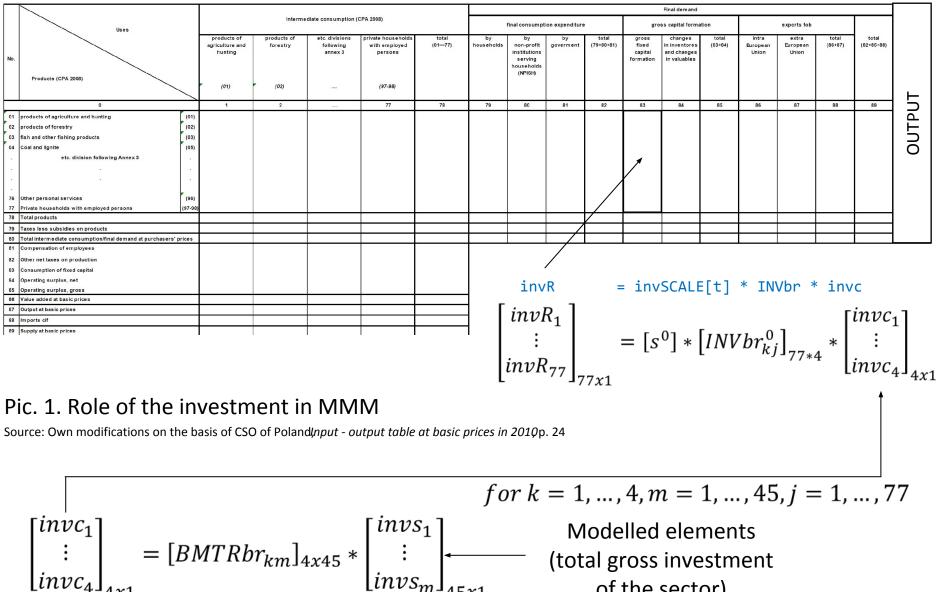
ECONOMIC GROWTH

- Solow-Swan model (1956-1957) and its modifications
- The problem of the accumulation of the capital (Phelps 1961, Domar 1962)

 The relationship between investment expenditures and the levels of the income and employment (Keynes 1936 and others) INNOVATION S

 Diffusion of innovations and investments (Schumpeter 1960)

Dual nature of the investment:

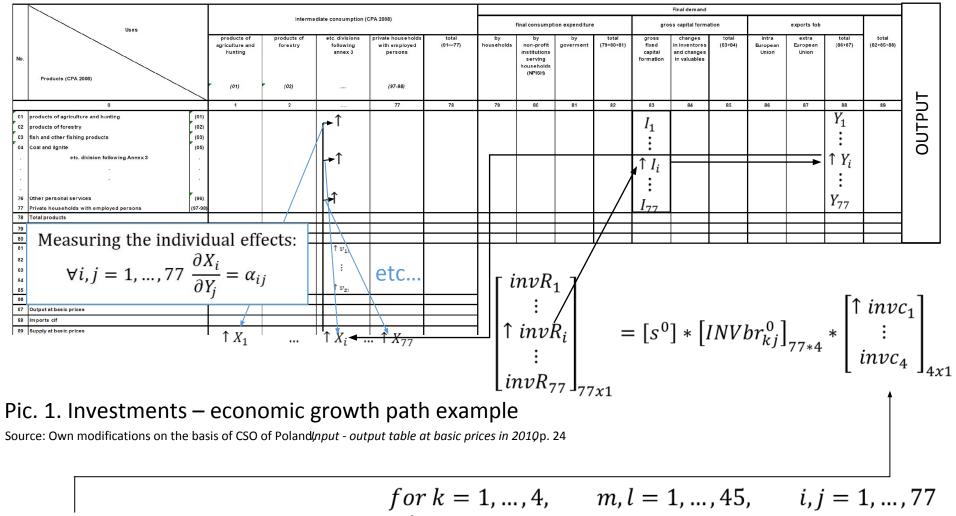

- (demand side) generating National Income through the multiplier effects,
- (supply side) increasing production capacities of the economy.

SCHEME OF INPUT - OUTPUT TABLE AT BASIC PRICES

invc

= BMTRbr * invs:

1. Introduction



of the sector)

ANNEX 1

SCHEME OF INPUT - OUTPUT TABLE AT BASIC PRICES

1. Introduction

$$\begin{bmatrix}\uparrow invc_{1}\\\vdots\\invc_{4}\end{bmatrix}_{4x1} = \begin{bmatrix}BMTRbr_{km}\end{bmatrix}_{4x45} * \begin{bmatrix}invs_{1}\\\vdots\\invs_{m}\end{bmatrix}_{45x1} = \begin{bmatrix}BMTRbr_{km}\end{bmatrix}_{4x45} * \begin{bmatrix}invs_{1}\\\vdots\\invs_{m}\end{bmatrix}_{45x1} & Sector \ I \ reports \ a \ higher \\ demand \ for \ the \ buildings \ and \\ the \ structures \end{bmatrix}$$

2. Investment demand function – variable In the literature there exist diverse approaches to the problem of determining factors that have

significant impact on the investments. For example:

Hicks (1937)

$$I_t = f(\Pi_t, r_t)$$

where: Π_t - profits after taxes, r_t - real interest rate.

Clark (1979) •

$$I_t = f(\Delta Y_t, \dots, \Delta Y_{t-s}, K_{t-1})$$

where : ΔY_{t-s} - lagged s periods first difference in the production, K_{t-1} - level of fixed capital from the previous period.

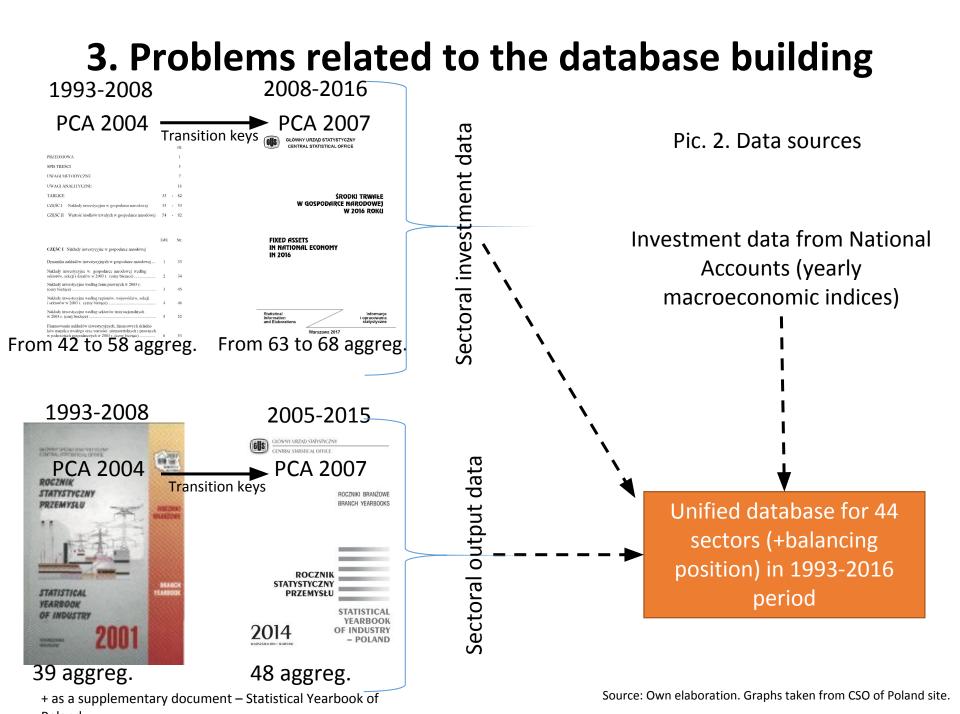
Hall, Taylor (1995) ٠

$$I_t = f\left(\frac{W_t}{R_t^K}, Y_t, K_{t-1}\right)$$

where : W_t - wage rate, R_t^K - rental price of the capital.

Welfe W. (2012)

$$I_t = f(I_{t-1}, Y_t, KU_{t-1})$$


where : KU_{t-1} - lagged user cost of the capital (dependent on, inter alia, depreciation rate, interest rate, tax rate or price of investment goods)

Almon (2017)

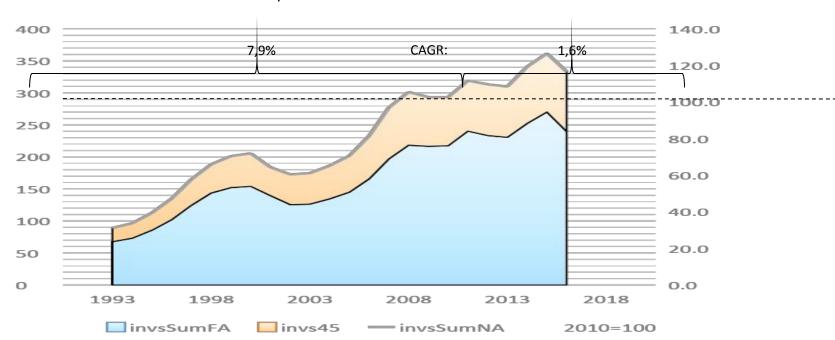
$$I_t = f\left(rep_t \ , \Delta Y_{t-1}, \ldots, \Delta Y_{t-s}, SP_{t-s}^{500}, \Delta SP_{t-1}^{500}, \ldots, \Delta SP_{t-s}^{500}\right)$$

where : rep_t - capital replacement, SP_{t-s}^{500} - real value of SP500 index.

Lots of the other examples can be found in: D. Meade (1990), Investment in a Macroeconometric Interindustry Model.

4. Statistical analysis of the sectoral investment

According to the publication *"Fixed assets in national economy"* total gross investment (s) contains following categories:


- buildings and structures (b);
- machinery, technical equipment and tools (m);
- transport equipment (t);
- rest of investment (r).

National accounts include additionally:

- expenditures on military equipment;
- expenditures on small tools;
- spendings on intellectual property products (like software or R&D spendings).

Differences between data sources give rise to the necessity of creating a balancing position.

4. Statistical analysis of the sectoral investment

Pic. 2. The level (left scale, constant prices from 2010, in bln zł) and the dynamics (right scale, 2010=100) of the total gross investment by two data sources in Poland in 1993-2016

Tab. 1. The structure of investment spendings in Poland in chosen periods

	%	of total gross in	vestment	
Category	1993	2004	2009	2016
buildings & structures	59	56	60	55
machinery & tech.equip.	28	32	30	34
transport equip.	7	10	9	10
other investments	6	3	1	1

4. Statistical analysis of the sectoral investment

Tab. 2. Five sectors with the highest share in total gross investent in Polish economy in chosen periods

								Change in 201	6 in relation
199	93	200)4	200)9	20:	16	to 1	993
Sector	% share	% change	change in p.p.						
Real estate services	14.3	Real estate services	14.5	Transportation and storage	17.3	Transportation and storage	17.1	19.4	2.8
Transportation and storage	14.3	Transportation and storage	12.3	Real estate services	13.1	Real estate services	13.2	-8.0	-1.1
Electricity, gas, steam and a/c	11.1	Sale and repair of motor vehicles	9.4	Sale and repair of motor vehicles	9.0	Electricity, gas, steam and a/c	9.5	-14.6	-1.6
Sale and repair of motor vehicles	7.5	Electricity, gas, steam and a/c	6.1	Electricity, gas, steam and a/c	6.2	Sale and repair of motor vehicles	7.4	-1.2	-0.1
Natural water	5.5	Natural water	4.7	Natural water	5.8	Motor vehicles	3.6	569.0	3.0
Other sectors	47.3	Other sectors	53.0	Other sectors	48.6	Other sectors	49.3	х	х

Source: Own elaboration.

Tab. 3. Sectors with the highest share of particular category of the investment in total investments of the sector in 2016.

Catagoni	% c	of total investmen	nt (s) in sector in 2016			
Category	highest	sector	lowest	sector		
buildings & structures	97.1	Real estate services	6.4	Office administrative services		
machinery & tech.equip.	89.1	Tobacco products	2.0	Real estate services		
transport equip.	70.3	Office administrative services	0.4	Tobacco products		
other investments	11.6	Agriculture and hunting	0.0	Repair and inst. of mach. and equip.		

5. Estimation results – sectoral investment The process of building the sectoral investment models for Poland was as follows:

1. Estimation of the parameters of the investment model for each of 45 sectors (basic model form). Method - OLS:

 $\forall i = 1, 2, ..., 45 \text{ i } t = 1(1996), ..., 21(2016)$

 $inv_{it} = a_1 caprep_{it} + a_2 dout_{it} + \dots + a_4 dout_{it-2} + a_5 rlomr_t + a_6 rlomr_{t-1} + e_{it}$ (1) r invsR%1 = !caprep, doutR%1, doutR%1[1], doutR%1[2], rlomr, rlomr[1] Soft constraints: con [] 1=a1

where:

*caprep*_{it} – the capital replacement (see: Almon 2017. *The craft...*), computed on the basis of the fixed capital stock estimation. Capital stock here is the sum of the investment spendings from a previous periods (minus an appropriate amount of deprecation),

fdates 1990 2050 f ub20 = @cum(ub20, 1., .20)f caprep = @cum(invcum, invs%1[1], .20)/ub20

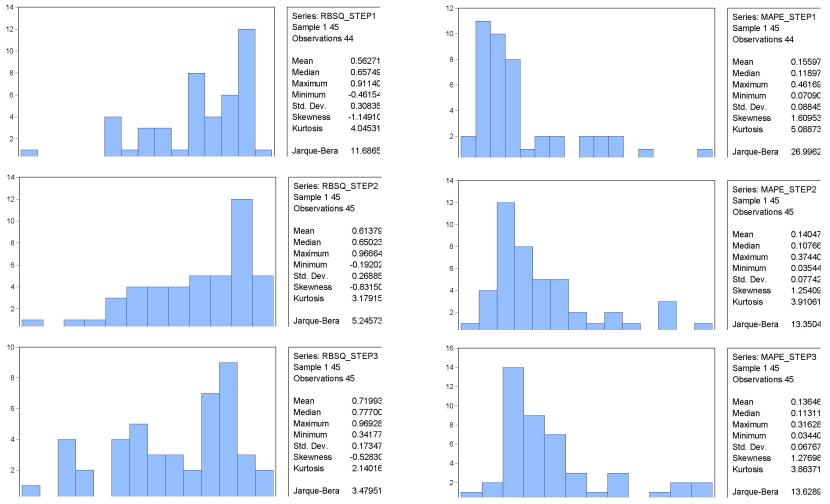
 $dout_{it}$ – first difference in the real output in *ith* sector in the moment t,

 $rlomr_t$ – real weighted lombard rate.

5. Estimation results – sectoral investment The process of building the sectoral investment models for Poland was as follows:

2. Estimation of the parameters of the investment model with external production effects of the entire economy:

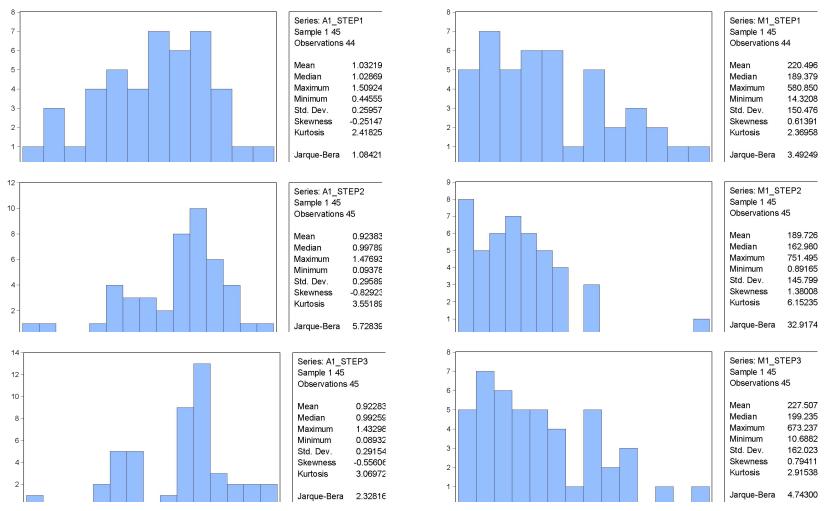
 $inv_{it} = a_1 caprep_{it} + a_2 dout_t + \dots + a_4 dout_{t-2} + a_5 rlomr_t + a_5 rlomr_{t-1} + e_{it}$ (1) Soft constraints: con [] 1=a1


 $dout_t$ – first difference in the real output of the economy in the moment t.

- 3. In the last step individual approach to each of the sector was used. The modifications consisted in:
 - the elimination of the variables, which were characterized by statistically insignificant structural parameter,
 - the elimination of the variables with the parameter's sign that was inconsistent with theory,
 - including PMI index instead of real weighted lombard rate in some equations.

5. Estimation results – sectoral investment models

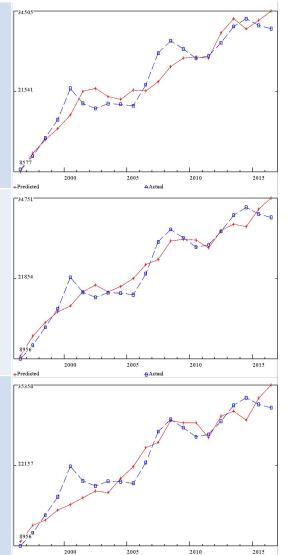
General conclusions from the estimation:


1. In 30 sectors the inclusion of the external production effects of the entire economy gives better stochastic structure parameters of the model.

Source: Own elaboration based on Eviews software.

5. Estimation results – sectoral investment Structural parameter of the lombard rate and its lags often took a positive value.

- 2.
- 3. Structural parameter next to replacement was always statistically significant, but not always was around 1.0.

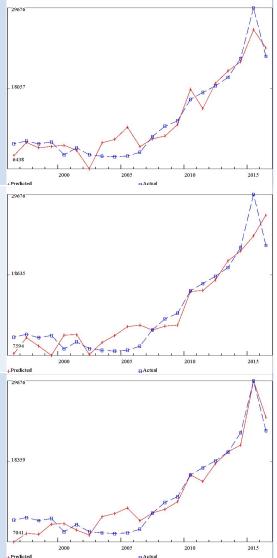

Source: Own elaboration based on Eviews software.

5. Estimation results – sectoral investment models 33. Transportation and storage

S t a g e 1	<pre>SEE = 6761.62 RSQ SEE+1 = 5276.30 RBSQ MAPE = 20.07 Variable name 0 invsR33 1 caprep 2 doutR33 3 doutR33[1] 4 doutR33[2] 5 rlomr 6 rlomr[1]</pre>		53285 33331
S t a g e 2	<pre>SEE = 6477.92 RSQ SEE+1 = 5421.43 RBSQ MAPE = 16.64 Variable name 0 invsR33 1 caprep 2 doutRsum 3 doutRsum[1] 4 doutRsum[2] 5 rlomr 6 rlomr[1]</pre>	<pre>= 0.7103 RHO = 0.58 Obser = 21 from 1996.000 = 0.6137 DW = 0.84 DoFree = 15 to 2016.000 Reg-Coef Mexval Elas NorRes Mean Beta </pre>	53285 33676 10666 +Predicted 0 0 0 0 0 0 0 0 0 0 0 0 0
S t a g e 3	<pre>SEE = 6833.71 RSQ SEE+1 = 5610.77 RBSQ MAPE = 20.94 Variable name 0 invsR33 1 caprep 2 doutRsum 3 doutRsum[2] 4 rlomr[1]</pre>	= 0.6776 RHO = 0.60 Obser = 21 from 1996.000 = 0.6207 DW = 0.79 DoFree = 17 to 2016.000 Reg-Coef Mexval Elas NorRes Mean Beta 	53285 32410 32410

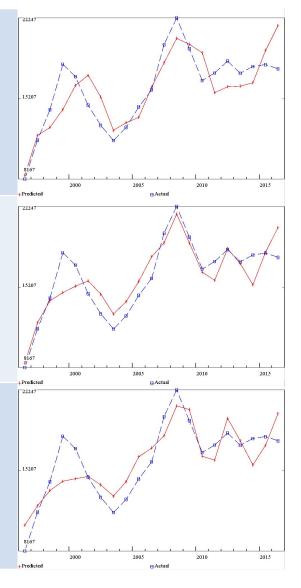
5. Estimation results – sectoral investment models 37. Real estate services

S t g e 1	<pre>SEE+1 = 2012.95 RBSQ MAPE = 7.48 Variable name 0 invsR37 1 caprep 2 doutR37 3 doutR37[1] 4 doutR37[2] 5 rlomr</pre>	= 0.9028 RHO = 0.42 Obser = 21 from 1996.000 = 0.8704 DW = 1.17 DoFree = 15 to 2016.000 Reg-Coef Mexval Elas NorRes Mean Beta 23354.68 1.14928 580.9 0.88 2.46 17903.79 -0.11144 1.8 -0.02 2.44 3639.45 -0.069 -0.03807 0.3 -0.01 2.30 3386.81 -0.023 0.11275 1.8 0.02 1.78 3243.57 0.068 487.00401 9.4 0.12 1.00 5.57 0.250 20.45390 0.0 0.00 1.00 5.52 0.011
S t g e 2	<pre>SEE+1 = 1825.89 RBSQ MAPE = 6.48 Variable name 0 invsR37 1 caprep 2 doutRsum 3 doutRsum[1] 4 doutRsum[2]</pre>	= 0.9286 RHO = 0.28 Obser = 21 from 1996.000 = 0.9049 DW = 1.44 DoFree = 15 to 2016.000 Reg-Coef Mexval Elas NorRes Mean Beta 23354.68 1.03717 428.0 0.80 3.35 17903.79 0.00794 3.5 0.03 2.89 96691.89 0.071 0.00677 2.4 0.03 2.35 96449.89 0.061 0.01783 14.4 0.07 1.51 90705.85 0.155 145.60093 1.1 0.03 1.03 5.57 0.075 172.90312 1.6 0.04 1.00 5.52 0.089
S t a g e 3		= 0.8923 RHO = 0.44 Obser = 21 from 1996.000 = 0.8732 DW = 1.12 DoFree = 17 to 2016.000 Reg-Coef Mexval Elas NorRes Mean Beta 23354.68 1.03697 352.3 0.79 2.22 17903.79 0.01382 7.5 0.06 1.92 96691.89 0.124 0.00823 2.4 0.03 1.56 96449.89 0.074 0.02649 24.8 0.10 1.00 90705.85 0.230

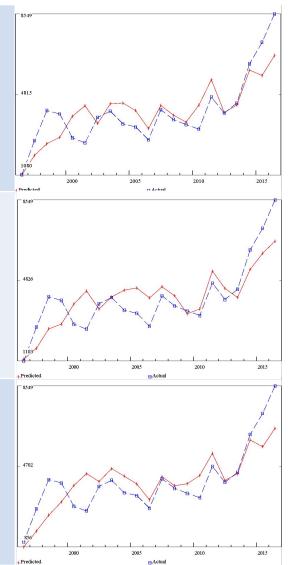


Actual

Predicted


5. Estimation results – sectoral investment models 29. Electricity, gas, steam and a/c

S t a g e 1	<pre>SEE+1 = 1680.64 RBSQ = MAPE = 12.08 Variable name 0 invsR29 - 1 caprep 2 doutR29 3 doutR29[1] 4 doutR29[2] 5 rlomr 3</pre>	-0.4773224.3-0.002370.0357.241517.8	.64 DoFree = Elas NorRes	1472.03 -0.288 1213.43 -0.001	- 18057 6438
S t a g e 2	<pre>SEE+1 = 2182.72 RBSQ = MAPE = 13.80 Variable name 0 invsR29 - 1 caprep 2 doutRsum 3 doutRsum[1] 4 doutRsum[2] 5 rlomr 3</pre>	-0.00103 0.0 398.86693 6.2	.80 DoFree = Elas NorRes 1.11 1.55 0.05 1.54 -0.05 1.49	96691.89 0.071 96449.89 -0.074 90705.85 -0.011	- 18635
S t a g e 3	<pre>SEE+1 = 1409.86 RBSQ = MAPE = 12.68 Variable name 0 invsR29 - 1 caprep 2 doutR29[1] 3 rlomr[1] -1</pre>		.71 DoFree = Elas NorRes 1.07 2.56 -0.03 1.31 -0.06 1.18	10158.74 1472.03 -0.178 5.52 -0.096	- 18359


5. Estimation results – sectoral investment models 32. Sale and repair of motor vehicles

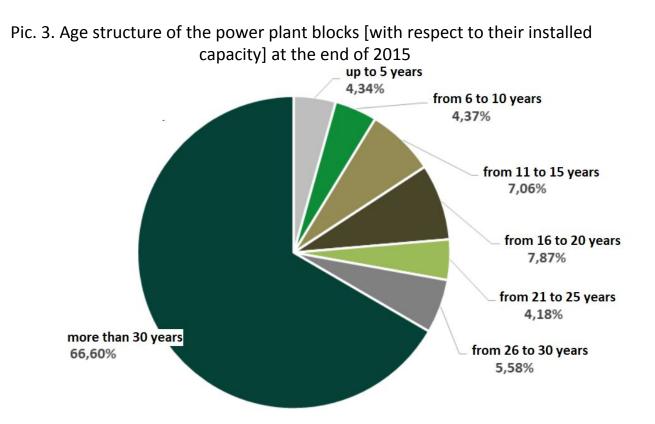
S t g e 1	SEE+1 = 1723.20 RBSQ = MAPE = 9.42 Variable name 1 Ø invsR32 - 1 caprep 2 2 doutR32 3 3 doutR32[1] 4 4 doutR32[2] 5 5 rlomr 22	0.5703 DW Reg-Coef Ma	= 0.44 Obs = 1.13 DoF exval Elas 396.4 0.79 22.8 0.08 14.3 0.07 8.6 0.05 2.5 0.08 1.8 -0.06		15 to 2016.000 Mean Beta 16046.98 12971.34 10493.37 0.417 10261.87 0.355 9162.56 0.281 5.57 0.248	
S t g e 2	<pre>SEE+1 = 1392.75 RBSQ = MAPE = 7.39 Variable name 0 invsR32 1 caprep 2 doutRsum 3 doutRsum[1] 4 doutRsum[2] 5 rlomr 1</pre>	Reg-Coef M	= 0.40 Obs = 1.20 DoF exval Elas 209.2 0.58 15.5 0.08 27.0 0.12 33.5 0.13 2.6 0.06 0.5 0.03	ree = NorRes 6.42 5.11 3.01 1.53	Mean Beta 16046.98 12971.34 96691.89 0.262 96449.89 0.368 90705.85 0.428	
S t g e 3	<pre>SEE+1 = 1587.70 RBSQ = MAPE = 9.45 Variable name I 0 invsR32 - 1 caprep 2 doutRsum[1] 3 doutRsum[2]</pre>	0.7324 RHO 0.6852 DW Reg-Coef Ma 0.53889 0.01991 0.01976 96.73158	= 1.15 DoF	ree = NorRes	17 to 2016.000 Mean Beta 16046.98 12971.34 96449.89 0.382	

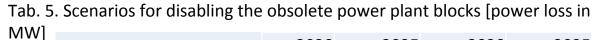
5. Estimation results – sectoral investment models 24. Motor vehicles

S t g e 1	<pre>SEE+1 = 775.49 RBSQ = MAPE = 19.00 Variable name 0 invsR24 - 1 caprep 2 doutR24 3 doutR24[1] 4 doutR24[2] 5 rlomr 1</pre>	= 0.6642 RHO = 0.60 Obser = 21 from 1996.000 = 0.5523 DW = 0.81 DoFree = 15 to 2016.000 Reg-Coef Mexval Elas NorRes Mean Beta 3992.02 1.28662 119.0 0.90 1.66 2785.67 0.02020 1.0 0.03 1.58 5754.03 0.087 0.01150 0.3 0.02 1.55 5291.56 0.049 -0.07125 10.9 -0.09 1.40 4849.29 -0.303 176.12093 6.7 0.25 1.02 5.57 0.394 -70.82589 1.0 -0.10 1.00 5.52 -0.160
S t g e 2	<pre>SEE+1 = 775.40 RBSQ = MAPE = 21.48 Variable name 0 invsR24 - 1 caprep 2 doutRsum 3 doutRsum[1] 4 doutRsum[2] 5 rlomr 1</pre>	= 0.6419 RHO = 0.63 Obser = 21 from 1996.000 = 0.5226 DW = 0.75 DoFree = 15 to 2016.000 Reg-Coef Mexval Elas NorRes Mean Beta 3992.02 3992.02 1.22819 103.3 0.86 1.55 2785.67 0.00158 0.5 0.04 1.37 96691.89 0.062 0.00371 2.7 0.09 1.32 96449.89 0.145 -0.00658 7.7 -0.15 1.28 90705.85 -0.250 132.56073 3.1 0.18 1.00 5.57 0.297 13.09995 0.0 -0.02 1.00 5.52 -0.030
S t a g e 3	<pre>SEE+1 = 716.06 RBSQ = MAPE = 20.28 Variable name 0 invsR24 - 1 caprep 2 doutR24[2]</pre>	= 0.6491 RHO = 0.69 Obser = 21 from 1996.000 = 0.6101 DW = 0.61 DoFree = 18 to 2016.000 Reg-Coef Mexval Elas NorRes Mean Beta 3992.02 1.32824 205.1 0.93 1.59 2785.67 -0.07360 12.8 -0.09 1.38 4849.29 -0.313 16.01999 17.3 0.16 1.00 5.57 0.260

Why am I interested in the topic...?

Facts:


- Polish energy sector has been historically based on the fossil fuels;
- the majority of existing power plants and installations are old;
- the energy sector requires significant investments...


Tab. 4. The structure of installed capacity and electricity generation in Polish electric power system as at 31 December 2017

2,8%		Power plant type:	Installed capacity [in MW]	%share	Electricity generation [in GWh]	%share
10,6%		hard coal	20 247	46.6	79 868	48.2
2,3%		lignite	9 352	21.5	51 983	31.3
12,3%		natural gas	2 341	5.4	7 172	4.3
^{installed} capaci	installed	captive	2 813	6.5	10 057	6.1
	hydropower	2 328	5.4	2 767	1.7	
 wind power plants solar energy 	hydropower plantsbiomass	wind and other renewables	6 341	14.6	14 005	8.4
biogas		TOTAL	43 422	100.0	165 852	100.0

Source: PSE S.A. (Polish Electricity Networks Inc.) Databases.

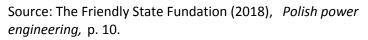
Facts:

·]	2020	2025	2030	2035
"Modernization" scenario	3000	3200	5700	13900
"Turn off" scenario	6600	9900	17300	20300

Source: PSE S.A. (Polish Electricity Networks Inc.) Databases.

Ideas:

- In the public debate, there exists a lot of ideas how the future of Polish energy sector should develop, but...
- ... policy makers still are not determined to choose the main path of development.


	Public	Private (think tank)
Polish Energy Policy (PEP) 2050 (2014)	National Programme for the Development of a Low-emission Economy (2015)	Polish Energy sector 2050. 4 scenarios
 Balanced scenario Nuclear scenario "Natural Gas+RES" scenario 	Central scenarioHigh scenarioLow scenario	 Hard coal scenario Diversified scenario (with the nuclear power) Diversified scenario (without the nuclear power) Renewable scenario

Tab. 6. The example of the paths of the energy system development from domestic documents

Source: Own research.

Pic. 4. Electricity annual demand forecast up to 2030 [in

Diversified scenario (without NPP)

 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035 2037 2039 2041 2043 2045 2047 2049

 — Coal scenario

 — Diversified scenario (with NPP)

RES scenario

Source: P. Mikusek ed. (2017), *Polish Energy sector 2050. 4 scearios,* Energy Forum, p. 7.

<u>Threats:</u>

Hard coal	Nuclear power
 delays in the diversification of Polish energy system; low elasticity of installed capacity; strong dependence on world CO₂ emission allowance prices, the necessity of import of a high amount of coal in the future. 	 the increase in electricity prices; delays in construction schedule due to high investment cost problems with balancing the installed power (in case of a breakdown)
Shale gas	RES
 possibility of overestimating an amount of the resources; high degree of the devastation of the natural environment; the increase of the mining costs over the time. 	 problems connected with energy storing and system stability. strong dependence on future weather conditions.

7. Summary and directions of further research

SUMMARY

- I. Modelling investment on the high disaggregation level is associated with limited selection of the determinants (data availability).
- II. Estimation results indicate that in many sectors better results are achieved by including the macroeconomic business cycle.
- III. Individual approach is time-intensive but allows the researcher to deal with the specificity of the sector's performance and helps with obtaining better quality of the structural and stochastic parameters of the model.
- IV. Polish energy sector needs one clear scenario of development, where investments made will contribute to shift the economy to the low-emission growth path.

DIRECTIONS OF FURTHER RESEARCH:

- I. Determining the shape of the energy block, which will be a part of MMM.
- II. Giving the multisectoral energy model a purpose conducting simulations of future energy carriers usage and its emissions levels on the basis of various scenarios of the development of Polish energy sector.

Chosen literature

- Almon C. (2017), *The Craft of Economic Modeling*. Boston: Ginn Press, Third, Enlarged Edition.
- Domar E.D. (1962), *Szkice teorii wzrostu gospodarczego*, Warszawa: PWN.
- Hall. R.E, Taylor J.B., (1995), *Makroekonomia*. *Teoria, funkcje i polityka*, Warszawa: PWN.
- □ Horst R.L. (2002), Investment in structures in IDLIFT, INFORUM.
- Meade D. (1990), Investment in a Macroeconometric Interindustry Model, Dissertation directed by C. Almon.
- Miller R., Blair P. (2009), Input-Output analysis. Foundations and Extensions. New York: Cambride University Press.
- □ Środki trwałe w gospodarce narodowej (2004-2017), GUS, Warszawa.
- □ Welfe W. (2012), *Modelowanie inwestycji a gospodarka oparta na wiedzy, "*Folia Oeconomica", Vol. 268, s. 9-38.