

Demographic Projection in Russian Interindustrial Model

Vadim Potapenko Institute of Economic Forecasting Russian Academy of Sciences

Demographic situation in Russia

Russian population on 1st January, million people

2

Institute of Economic Forecasting

Russian Cross

Components of natural increase of population, million people

Russian Age Pyramid

Population by age in 2014, thousand people

Institute of Economic Forecasting

Features of Russian Age Pyramid: comparison with 1960

Males Females Males Females

Features of Russian Age Pyramid: comparison with Germany

6

Institute of Economic Forecasting

Total Fertility Rate

7

Institute of Economic Forecasting

Mortality

Life Expectancy at Birth, years

Demographic situation is the most discussed subject of socioeconomic agenda in Russia for many years

There are main concerns about possible future demographic situation:

Depopulation (great territory with decreasing population have political and social risks in a long-time period)

Change of population structure (that can affect labour market conditions and decelerate economic growth)

>Increase of expenditures on pension system

Cohort Component Method

Cohort component method is used for population forecasting

To use the method we need to have:

*****Population by sex and age (1-year groups) in basic year

*Age-specific survival ratios for males and females for every year of forecast period

*****Age-specific fertility rates for every year of forecast period

*****Number of migrants by sex and age for every year of forecast period

Example of the method's using:

 $N_{f25}(2014) = (N_{f24}(2013) + 0.5*I_{f24}(2013, 2014))*S_{f25} + 0.5*I_{f25}(2013, 2014),$

where $N_{f25}(2014)$ – number of females at age 25 on 1st January of 2014,

Sf25 – survival ratio for females from age 24 to 25,

If25(2013, 2014) - number of net female migrants at age 25 in 2013

To apply cohort component method we need to develop fertility, mortality and migration scenarios by sex and age for every year of forecast period

Mortality Scenario

For developing mortality scenario Murray's method* is used. By the method only two parameters – probability of dying before age 5 and 60 – let approximately calculate all elements of life table

In this way, to develop whole mortality scenario for Russia only four values for every year has to be set: probability of dying before age 5 and 60 for males and for females.

These forecast values were set through analysis of the retrospective data for Russia and a wide range of other countries

*Murray C.J.L. (2003). Modified logit life table system: principles, empirical validation and application. *Population Studies* 57(2)

Example of using mortality's historical patterns

Current Russian level of probability of dying before 5 years (for males) is 12

Points on the figure are 28 countries (Europe, USA, Japan, Canada)

Source: Human Mortality Database

Mortality scenario assumes that falling of probability of dying before 5 years (for males) from 12 to 8 (per thousand people) will take 6 years in Russia, as it is ordinary for countries that achieved 12 after 1990

Fertility Scenario

For developing fertility scenario the next formula is used*

$$f(x) = T * e^{-\left(\frac{x-M}{N(x)}\right)^2}$$

where f(x) – age-specific fertility rate at mother's age x, T – a parameter that describes level of fertility linked with total fertility rate, M – a modal mother's age N(x) – an additional parameter that reflects spread of fertility curve before and after modal mother's age (it splits by two values – the first one is for ages before

after modal mother's age (it splits by two values – the first one is for ages before modal mother's age, the second one is for ages after it)

To develop whole fertility scenario only four values should be set: total fertility rate, modal mother's age and two additional parameters of spread

*Peristera P., Kostaki A. (2007). Modeling fertility in modern populations. Demographic Research, Volume 16

Main exogenous variables' values that are set for demographic forecast

			2013	2030	2050	2070	Bases
Probability of dying before age (per thousand people)	5	males	12	5	4	4	Analysis of retrospective data for Russia and other
		females	9	3	3	3	
	60	males	332	210	135	99	
		females	132	98	58	50	
Modal mother's age			25	28	30	30	countries
Total fertility rate			1.71	1.74	1.83	1.87	UN forecast
Net migration, million people			0.30	0.11	0.08	0.05	(medium variant)

The scenario is quite MEDIUM. Firstly, it supposes that Russian mortality will decrease by current level of Western Europe in 50 years only. Secondly, the scenario supposes very fast decrease of migration flows

Forecast: mortality

Life Expectancy at Birth, years

Institute of Economic Forecasting

Forecast: fertility

Age-specific fertility rates

16

Institute of Economic Forecasting

Forecast: the Second Russian Cross

Components of natural increase of population, million people

17

Institute of Economic Forecasting

Forecast: population

Russian population on 1st January, million people

Institute of Economic Forecasting

Forecast: age pyramids

19

Institute of Economic Forecasting

Forecast: structure

Structure of Russian population by age, %

20

Institute of Economic Forecasting

Forecast: structure

Ratio of dependants and employed, %

This calculation supposes that age-specific rates of economic activities and age-specific rates of unemployment will be the same as in 2013 for every year of forecast period

Forecast: pension system

Number of people at pension age, % of population

Variant 1 – current pension age (males – 60, females – 55) Variant 2 – increasing pension age (males – by 65 from 2030 to 2050, females – by 60 from 2020 to 2040)

THANK YOU FOR ATTENTION!

Institute of Economic Forecasting