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At last year’s meeting, I described optimization in macro models built with G7 and Build. 
This optimization could be used in two ways:

 (1) to find the values of the parameters of the equations – usually regression coefficients
– which would optimize the fit of the model in historical simulation, and

(2) to find policies – such as tax rates or money supply – which would optimize some
measure of performance of the economy.  One might, for example, optimize some
measure of welfare with respect to a carbon tax. 

For the second type of application, the policy variable would be represented as a regression
of the policy variables on a number of functions of time.  Thus, in both cases, what is done
technically is to optimize some function by varying certain selected regression coefficients.

As of last year’s meeting, none of this optimization worked in Interdyme models.  As a result
of work from March through August of this year, it now seems very close to working in
IdLift, the 97-sector U.S. model built with Interdyme.  Indeed, if I did not point out a
mysterious little problem, you might think that it was working perfectly.  And the results look
very encouraging.  Small changes in the parameters can produce substantial improvement in
the ability of the model to reproduce the course of the economy in a historical simulation.  

I chose to work with IdLift rather than with a simpler model for two reasons.  The first and
clearest is that an optimized version of IdLift may prove very useful.  The second is that I
wanted a complicated model so that most problems would be encountered.

I also decided to work only with the regression coefficients of the macro equations, not the
“detached coefficient” equations.  This restriction to coefficients of macro equations is
temporary; I see no problem in principle in extending the optimization to the detached
coefficients.  On the other hand, the biggest payoff is likely to be in optimizing with respect
to coefficients in the macro equations. 

Step 0 of the process was then to make IdLift operate in historical simulation. I was only
partly successful in this step.  When I began work on it, it would run only from 1990 to 1993. 
After considerable sleuthing as to why it would suddenly break down and produce negative
outputs or prices, I have made it run from 1990 to 1997.  Then in 1998 it explodes.  I do not
presently know why, but to get on with the optimization, I decided – after  weeks of
unsuccessful  search –  to get on with optimization over the 1990-1997 period.  Since the
model had not previously been used in historical simulation, it is not surprising that it did not
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perform very well.  It appears to me that some further adjustments are necessary to get a
satisfactory historical simulation of the model.

I will first show an example of how to set up optimization in an Interdyme model which has
already been adapted for optimization, next sketch the optimization algorithm, and then show
the results.   I hope that by that point you will want to try optimization in your own model, so
I will then explain how to adapt a model for optimization. 

1. Example:  Optimizing the Savings Function in IdLift

Specifying the Optimization

To optimize, we must first form an objective function and then specify the variables which
will be varied to achieve the optimum.  The historical simulation of IdLift showed that it
quickly developed negative unemployment rates, which certainly do not speak well for the
model.  For this example, therefore, I took as the objective function the square of the
difference between the true, historical unemployment rate, unact, and the unemployment rate
calculated by the model, un.  This objective function is built into the model by creating the
following  OBJECT.SAV file:

# Optimization variables. 
# un is the percentage rate of unemployment
fex unact = un 
f err1 = @sq(un - unact)
f error = @cum(error,err1,0)

The effect of these lines is to make unact the actual, historical rate of unemployment, to make
err1 the square of the difference between it and the unemployment rate calculated by the
model, and to make error the running sum of squares of the differences between the
historical rate and the one calculated by the model.  It is the value of error in the last period
which will be minimized, that is, the sum of the squared differences in all periods. 

Then in the MASTER file, the line

iadd object.sav

must be included to get the code of OBJECT.SAV into the model.  Finally, somewhere in
MODEL.CPP, after the unemployment rate has been calculated, we need a call to Objectf(),
like this:  

    // Calculate the objective function
    Objectf();

With the objective function thus defined and calculated, we need to tell the program that
error is the objective function and also to tell it with respect to which of the many regression
coefficients it is to be optimized.  That is done by the OPTSPEC.OPT file, which may read:
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error
50
savrat
  .01  .01  0  0  0

The first line says that the last value of the variable error is to be minimized.  The second
says that no more than 50 parameters will be involved in the minimization. (In fact, only two
are involved, but the 50 allows room for expansion without constantly revising the upper
limit.) The third line says that parameters from the equation with savrat (the savings rate) as
the dependent variable will be involved in the minimization.  The fourth line says that it is
only the first and second of those parameters which will be varied and that the initial step size
of variation is .01 for each of them.  The 0's in this step-size line mean that the corresponding
parameters in the equation will not be varied.

Of course, to understand the economic meaning of this specification, one needs to know the
equation for the savings rate.  It comes out of G as:

r savrat =    -2.113946*intercept +
          0.670269*(gnpgap-100) +
          1.472484*rtb[1] +
          1.151521*savdummy

where gnpgap is the ratio of model-generated GNP to an estimate of potential GNP, scaled to
have a “normal” value of 100.  rtb is the interest rate on Treasury bills and savdummy is a
dummy variable to account for an exceptional value of the savings rate in one year.  The key
role here is played by the gnpgap variable.  The idea is that in good times, people will
increase their savings, while in recessions, they will eat into their savings.  Our optimization
is done with respect to this coefficient and the intercept. 

With the optimization criterion and variables specified, there is but one last step: tell the
model to optimize instead of simply running a historical simulation.  This is done in the last
lines of the DYME.CFG file.  In the case of IdLift, this file has been renamed IDLIFT.CFG
and you may also have named this file for your model.  Here are the top and bottom of this
file as used here; new material is in bold:

Title of run   ;Suzdal Example of Optimization
Start year     ;1990
Finish year    ;1997
Discrepancy yr ;1990
Use all data?  ;yes
VecFix file    ;Vecfixes
MacroFix file  ;Macfixes
Vam file       ;dyme
G bank         ;dyme

... <Several lines  are omitted here> ...

Name of Optimization specification file; OptSpec.opt 
Number of random draws; 0
Additive random errors; no
Random coefficients; no
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The line crucial for the optimization is the fourth from the end.  It will cause the OptSpec.opt
file described above to be read and used. (To run the model without optimization, simply put
“none” on this line or leave it blank.)  Even though stochastic simulation is not yet fully
operational, the reading of the configuration file is ready for it, so the last three lines above
must be present.

The Downhill Simplex Optimization Method

The method used to minimize the objective function, the Downhill Simplex, was explained in
last year’s paper and is described in Part 2 of The Craft of Economic Modelling.  I quickly
review it here.  A simplex in n dimensions is n+1 points that do not lie in a subspace of lower
dimensions.  The Downhill Simplex methods begins by selecting a simplex with the first
point being the estimated values of the parameters to be varied and n other points obtained
from it by varying one parameter at a time by the step sizes given in the optimization
specification file, here called OPTSPEC.OPT.  The method then tries to get a point better that
the worst point by reflecting the worst point through the mean of the other points.  If that
works, it then tries another step of the same size in the same direction, a step called
expanding.  If that fails, the method retreats to the reflected point.  But if the reflected point
fails to improve on the worst point, a step halfway from the worst point to the mean of the
others is tried, a move called contracting.  If contracting also fails to get a point better than
the worst point, a shrink is done moving all the points other than the best point halfway
towards the best point.  When the difference between the value of the objective function at
the best point and at the worst point is less than some specified fraction of their average, the
process stops.  

Results

The log of the optimization process is shown in the box below. My impression is that the
process took about ten minutes.  The resulting changes in the regression coefficients were
fairly minor, as shown by the following table.

Resulting coeficients after optimization 
Variable    Old    New    Variable
savrat  -2.1139  -2.0431 (intercept)
savrat   0.6803   0.9553 (gnpgap)

The changes in the fit of the model, however, were considerable, as shown by the two graphs
below.  The error has been reduced by more than 50 percent.  

While this improvement is impressive for such a simple change, it might have been even
greater except for the mysterious small problem noted at the beginning of this paper.  This
problem appears about halfway down the log where the one and only Shrink step (in bold
type) occurred.  Notice that in the Shrink step the best point got worse.  That should not
happen.  The value for the best point is simply calculated with the same values of the
parameters as it was originally calculated with.  The answers should be identical.  The fact
that they are not means that something is changing from one iteration to the next besides the
values of the parameters – some initial value, or fix, or rho adjustment, or something else.  I



5

have spent a lot of time identifying things which might change and insuring that they did not. 
But I must have missed something.  I will have to keep trying.  From the fact that the value of
error went up when recalculated, I had guessed that rerunning the model with the optimized
values of the regression coefficients might give a better value of error, but such was not the
case; the value of error got a little worse.  
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I hope that these results are dramatic enough to make you want to optimize in your model.  If

Log of Optimization Process

   Objective Function Values
Best Point           Worst Point        Diff/Average     Criterion

  Initial:          699.1032104     719.4415894    0.0286750    0.0010000
  Expand:           692.8596191     718.2062988    0.0359256    0.0010000
  Expand:           655.3725586     699.1032104    0.0645721    0.0010000
  Expand:           629.1927490     692.8596191    0.0963152    0.0010000
  Expand:           583.6524658     655.3725586    0.1157686    0.0010000
  Expand:           515.0829468     629.1927490    0.1994446    0.0010000
  Expand:           418.9052124     583.6524658    0.3286539    0.0010000
  Reflect:          418.9052124     515.0829468    0.2059506    0.0010000
  Contract:         418.9052124     442.9800110    0.0558654    0.0010000
  Expand:           361.0180664     440.4505920    0.1982174    0.0010000
  Contract:         361.0180664     429.1417236    0.1724301    0.0010000
  Reflect:          361.0180664     418.9052124    0.1484432    0.0010000
  Contract:         361.0180664     415.6075134    0.1405811    0.0010000
  Contract:         287.8601685     375.1665649    0.2633571    0.0010000
  Contract:         287.8601685     361.0180664    0.2254904    0.0010000
  Shrink:           347.1479187     363.3522339    0.0456138    0.0010000
  Contract:         347.1479187     360.6577148    0.0381737    0.0010000
  Expand:           286.1284790     347.1479187    0.1927103    0.0010000
  Contract:         286.1284790     347.1479187    0.1927103    0.0010000
  Reflect:          286.1284790     288.7161865    0.0090032    0.0010000
  Expand:           284.4019165     286.9833679    0.0090358    0.0010000
  Contract:         284.4019165     286.1284790    0.0060525    0.0010000
  Expand:           283.5445862     286.1201782    0.0090425    0.0010000
  Contract:         283.5445862     285.0385132    0.0052549    0.0010000
  Contract:         283.5445862     284.5006714    0.0033662    0.0010000
  Contract:         283.5445862     284.4019165    0.0030191    0.0010000
  Expand:           283.3757935     284.2439575    0.0030590    0.0010000
  Contract:         283.3757935     283.8456421    0.0016567    0.0010000
  Contract:         283.3757935     283.6492310    0.0009645    0.0010000
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I have been successful, you will want to know how to adapt your model for maximization,
and that is our next topic.  

2. Adapting a model for optimization

The steps above assume that the model has been adapted for optimization.  I will now explain
as much as I have been able to find out about what has to be done for this adaptation.  The
“mysterious small problem” reported above would seem to indicate that I have not found
everything necessary, but surely I must have found most of the necessary things.  To tell the
truth, I do not suggest that you start the process until I can report that it works totally without
any problems.

Step 1.  Run the New  IdBuild 3.0.

In previous versions of the Interdyme software, the regression coefficients of the macro
equations were constants in the C++ code.  For example, the savings rate equation, which
comes out of G looking like this:

r savrat =    -2.113946*intercept +
          0.670269*(gnpgap-100) +
          1.472484*rtb[1] +
          1.151521*savdummy

 
After processing by IdBuild versions below 3.0, the C++ code of the model looks like this:

/* savrat */ depend = -2.113946+
0.670269*(gnpgap[t]–100)+
1.472484*rtb[t-1]+
1.151521*savdummy[t];

savrat.modify(depend);

In this form, optimization (or stochastic simulation) with respect to the coefficients is
impossible because the program cannot vary a constant in the code.

The first step towards optimization was therefore to rewrite IdBuild to produce code like the
following:

/* savrat */ depend =   +coef[87][0] +
coef[87][1]*(gnpgap[t] + coef[87][2]) + 
coef[87][3]*rtb[t-1] +   
coef[87][4]*savdummy[t];

savrat.modify(depend);

Here, the constants have been replaced by variables, elements of the coef array. (The
savings equations happens to be equation number 87 in this array.)   In this format, the
program can vary the elements of the  coef array to optimize or perform stochastic
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simulation.  IdBuild 3.0 and above creates this sort of code. 

IdBuild 3.0 also writes two files, HEART.DIM and HEART.DAT, that give, respectively, the
dimensions of the coef array and its values.  The user should have no occasion to look at
these files, but, since  they are “humanly” readable, I will put their explanation here in in a
box which can be skipped without loss of continuity.

The ouput of IdBuild 3.0 is not compatible with earlier versions of Interdyme.  Since it seems
unlikely that anyone will want to use it before we have ready a “pedagogical” model for the
rest of Interdyme consistent with this IdBuild, I decided against making a general distribution
of it at this conference.  It is, however, available on request.

It took me a while to make these changes in IdBuild, but for you, the user of the Interdyme
software, this step is very easy: just run the new IdBuild 3.0 with your existing Master and
.sav files.  It should take only a few seconds.  

Step 2. Make the Interdyme model run with input from IdBuild 3.0.

This step should also be fairly easy.  First, add the file MAXI.CPP to the Interdyme model
project. (In Borland Builder, click the “Project” item on the main menu, then click “Add to
project.”  This Maxi module contains most of the new code specifically necessary for
optimization and, for that matter, for stochastic simulation.  Most of it was borrowed from the
same module for macro models with very little change.  

The routines in MAXI.CPP  require some new global variables, so the following lines need to
be added to DYME.INC to make compilation possible.

/* For optimizing and stochastic simulations*/
// Connected with Optimization or Stochastic Simulation
GLOBAL char MaxFlag,OptSpecFileName[80],objective[60];
GLOBAL short rnderr, rndcoef,num_draw,ranseed,iobjective;
GLOBAL char  randm;
GLOBAL short npy;
GLOBAL float increment;
GLOBAL short EquationCount,nequ;
GLOBAL short *ncoef;
GLOBAL float **coef, *rho1, *see1, **svp, **mvp;
GLOBAL FILE *fpbug;
GLOBAL FILE *fpdat;
GLOBAL char    **depvarnames, **eqname;
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The HEART.DIM and HEART.DAT Files

Here are the first few lines of HEART.DIM for IdLift

    89
d  7
d  7
d  6
d  6

The first line says that there are 89 macro equations, so the  coef array needs 89 rows.  The
next line says that the first of these equations was a “deterministic” equation, so no space
needs to be allocated for the variance-covariance matrix of the regression coefficients – and
they do not need to be read or even skipped over.  The same line informs the program that
this first equation has 7 coefficients, so the first row of the coef array needs 7 columns. 
The second row will also need 7 columns, but the third and fourth rows need only 6
columns.  Thus, coef is not a rectangular array.
Here are a few lines of the HEART.DAT file

cst1h
coeff =
0.420538  0.002037  0.144628  
0.095173  -0.107844  7.092513  
0.023499  
[... many lines omitted here]
savrat
coeff =
-2.113946  0.670269  -100  1.472484  
1.151521

  
The last four lines above give the equation for the savings rate.  When the values of the
parameters given here are substituted for coef[87][1] ... coef[87][5] in the second, new, form
of the equation, one gets the same equation as given by the old form.  

It must be emphasized that the user should never need to look at or modify these files.  This
explanation is given  just to avoid the impression that they are a “black box.”

These lines will, of course, already be in DYME.INC as it comes with the new Slimdyme 
model adapted for optimization, but if your DYME.INC has been changed from the standard,
you may want to include the new lines in your old file.   Some of these new variables apply
only to stochastic simulation which is not yet fully operational, but it seemed pointless to
remove them from the code only to return in a few months to put them back in.  

To get values for these variables, a few lines need to be added to the DYME.CFG file, as
illustrated above.  Code needs to be added to the configure function in CONFIG.CPP to read
these additions.    It should be something like
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    err += getopt(fpcfg,szOptSpecFN,60);// a file name
    err += getopt(fpcfg,szRandomDraws,7); // number
    err += getopt(fpcfg,szAdditiveRandomErrors,5); // yes or no
    err += getopt(fpcfg,szRandomRegressionCoefficients,5); // yes or no

After interpreting other items in the dyme.cfg file, the new items must also be interpreted
with code like this:
    depad(szOptSpecFN);
    if(strcmp(szOptSpecFN,"none")== 0 || strlen(szOptSpecFN) == 0)
        MaxFlag = 'n';
    else{
        MaxFlag = 'y';
        strcpy(OptSpecFileName,szOptSpecFN);
        }
    num_draw = atof(szRandomDraws);
    depad(szAdditiveRandomErrors);
    depad(szRandomRegressionCoefficients);
    if(szAdditiveRandomErrors[0] == 'y') rnderr = 1;
    else rnderr = 0;
    if(szRandomRegressionCoefficients[0]== 'y') rndcoef = 1;
    else rndcoef = 0;
    // Check consistency of desires
    if (num_draw > 0 && rnderr + rndcoef == 0) num_draw = 0;
    if(MaxFlag == 'y' && num_draw >0){
    printf("Cannot have both optimization and stochastic simulation.\n");
        printf("Fix .cfg file.\n");
        exit(1);
        }
  
The MAXI.CPP module contains the function coefdim, which reads the HEART.DIM file,
and the function coefread which reads the HEART.DAT file created by IdBuild.  To use
these routines, you need to modify the main program of your model, which is probably in
DYME.CPP.  You should find there the lines:

if((err=Initialize(argc,argvec))==ERR) {
exit(1);
}

This call to Initialize will read the DYME.CFG file and detect the information you have put
at the end of it which informs the program that you want to optimize.  Right after these lines,
put the following code: 

// read number of variables and stochastic indicator for each equation
nequ = coefdim();

/* If we are doing a deterministic or optimizing simulation,
num_draw, the number of draws of random coefficients will be zero. 
In that case, call coefread to read the regression coefficients of
the macro equations from Heart.dat and, if optimizing, the .opt file
which specifies the objective function and which coeffients in which
equations are to be varied, and the initial stepsizes.
*/

if(num_draw == 0) coefread();

/* Otherwise -- that is, if we are doing stochastic simulations --
read heart.dat and generate the first set of random coefficients. */
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else coefgen();
 
Again, this code will be standard in the next version of Slimdyme, the pedagogical model,
but it is given here in case you are modifying an existing model. 

At this point, you should be able to run the model in standard, non-optimizing, non-stochastic
simulation but with the regression coefficients of the macro equations in the coef array
rather than as constants in the program.   This step was also fairly easy, since most of the new
programming was down in MAXI.CPP where you did not have to touch it. 

Step 3. Globalize the Equations, Matrices and Vectors

The optimization code in MAXI.CPP assumes that a call to a new function,  spin(), which
you must write, will run the model through the cycle of years. The spin() function must, of
course, have access to all the Equation, Matrix, and Vector objects which have been created. 
The standard Slimdyme of the past has put all the Equation, Matrix, and Vector declarations
in the loop function in MODEL.CPP.  For some time, we have recognized that that practice
was unfortunate because it resulted in a lot of passing of arguments to functions.  The need to
write spin() forced a resolution of this issue.  The solution is to make all of these objects
global.  To do so, we put their declaration into USER.H, where only a default constructor can
be put which allocates no memory and loads no data.  Then in the loop function in
MODEL.CPP we call a new method for each vector, matrix, or equation, named simply r for
read which does the work formerly done by the declaration.  For example,  IdLift formerly
had 

 Vector out("out",'a'), im("im",'a'), fd("fd"), pdm("pdm",'a');

in the loop() function in MODEL.CPP. It now has 

GLOBAL Vector out, im, fd, pdm;

in USER.H and 

out.r("out",'a'); im.r("im",'a'); fd.r("fd"); pdm.r("pdm",'a');

in MODEL.CPP where the above declaration used to be.   Otherwise, the loop() function is
pretty much unchanged down to the big loop over the years which begins

for (t = godate; t<= stopdate; t++) {

That loop is now moved to a separate function, spin(), in MODEL.CPP.

Step 4. Write the spin() function.

The spin() function will look something like this:
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void spin(){
 int i,j,k, err;

... [other declarations] ...
tserin();// load macrovariables 
for (t = godate; t<= stopdate; t++) {
... [all of the existing code for the model] ...
shiftback();
}

Note that there is a call to tserin() at the beginning to reinitialize all the time series variables
before each “spin” of the model.  Also note that at the end of the each year’s calculation there
is a call to shiftback() rather than to store().  The call to store() would store the
calculated values of the vectors and matrices in the vam file and shift back the matrices of
lagged values of vectors.  The call to shiftback() only shifts back the matrices of lagged
values of vectors.  This change avoids any change in the objective function coming from
changed starting values of vectors or matrices.  The code for shiftback(), which is new,
is found in IDRUN.CPP.  The spin() function must not contain any call to storets()
which stores time series values. 

Back in the loop() function, the whole loop beginning 

for (t = godate; t<= stopdate; t++) {

is replaced by

if(MaxFlag == 'n')
    spin();
else
    maxsolve();

storets(); // Store the macro variable time series

The first two lines allow for running the model in an ordinary simulation without
maximization; the value of MaxFlag will be  'n' if there was no Optimization Specification
file given in the DYME.CFG file. 

The code for maxsolve()is in MAXI.CPP and should not require modification from one
model to another.  

3. What comes next

Looking back at these steps, it is a little hard to see how it took me six months to get
optimizing  working.  A lot of time went into finding my way around IdLift, and of course it
is easier to say “the code is in MAXI.CPP” than it is write that code.  I hope that I can soon
identify the “mysterious little problem” and produce a guide to adaptation for optimization
which I can be reasonably sure is complete.  I will then produce a version of Slimdyme coded
in the new way.  In the meantime, if you want to get started with optimization in its current
“beta” state, I will be glad to share with you what I have.


