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The Dynamic Leontief Model

and the

Theory of Endogenous Growth

By Heinz D. Kurz and Neri Salvadori

1. Introduction

After a decade or so of negligence, recent years have seen a remarkable revival in growth

theory. The state of the art of so-called "new" growth theory is summarised in Barro and Sala-i-

Martin (1995) and Aghion and Howitt (1998). Because in the models that are in high esteem in

this literature, and in contradistinction to the growth model of Robert Solow (Solow, 1956), the

steady-state rate of growth is endogenously determined, these models are also known as models

of "endogenous" growth. Immediately after the publication of the papers by Romer (1986) and

Lucas (1988), which triggered an avalanche of growth literature, there was a considerable

excitement in the profession about the original novelties contained in this literature. However, it

slowly gave way to a more sober assessment of the achievements of "new" growth theory. It

was pointed out that many, if not all, of the ideas put forward had been known for a long time

and that there were older growth theories prior to the "new" ones which fulfilled the criterion of

"endogeneity" advocated in contemporary growth economics. This criterion requires that long-

run growth is determined "within the model" rather than by some exogenously growing

variables (Barro and Sala-i-Martin, ibid., p. 38). It was pointed out, for example, that both the

theories of capital accumulation and economic growth of the classical economists from Adam

Smith to David Ricardo, Karl Marx's theory of extended reproduction and John von

Neumann's famous growth model all fulfil that criterion (see, for instance, Kurz and Salvadori,

1997, 1998a, 1998b).

In this short paper we shall show that Wassily Leontief's dynamic input-output model can also

be interpreted as belonging to the theory of endogenous growth. In fact, in the interpretation

given the model satisfies the defining characteristic of that theory: the long-run growth rate is

determined within the system – either as the outcome of the saving and investment behaviour of

agents or as the outcome of some planner's or policy maker's maximization of some objective

function.

The composition of the paper is the following. In Section 2 we shall briefly recall the features of

Leontief's dynamic input-output model. Section 3 presents a particular version of that model
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which is then used to analyse the implications of different given objective functions that are to

be maximized. A characteristic feature of the model developed is that the process describing the

consumption of workers and the (re)production of labour is taken to be a part of the Leontief

matrix, thus preserving an element of the closed model. This assumption is introduced in order

to prepare the ground for Section 4, in which the dynamic Leontief model will be compared to

the recent linear models of endogenous growth. It will be shown that, properly specified, the

dynamic Leontief model can indeed be considered an endogenous growth model. Section 5

contains some concluding remarks.

2. The dynamic Leontief model: a summary account

Dynamic input-output analysis derives from the static through consideration of lags or rates of

change over time of sectoral interdependences. The attention focuses on structural relations

between stocks of durable instruments of productions and flows of material inputs and flows of

outputs. In static input-output models, the final demand vector comprises not only consumption

goods, but also investment goods, that is, additions to the stocks of fixed capital items such as

buildings, machinery, tools etc. In dynamic input-output models investment demand cannot be

taken as given from outside, but must be explained within the model. The approach chosen is

the following: the additions to the stocks of durable capital goods are technologically required,

given the technique in use, in order to allow for an expansion of productive capacity that

matches the expansion in the level of output effectively demanded. A simple dynamic model has

the following form

xT
t (I - A) - (x T t+1 - x

T
t )B  = yT

t ,

where I is the nxn identity matrix,  A is the usual material input matrix (inclusive of wear and

tear of fixed capital goods or rather depreciation), B  is the square matrix of fixed capital

coefficients, x  is the vector of total outputs and y  is the vector of final deliveries, excluding

fixed capital investment; t refers to the time period. It deserves to be stressed that in this
approach time is treated as a discrete variable. The coefficient bij  defines the stock of products

of industry j required per unit of capacity output of industry i and is thus a stock-flow ratio.

The time path of all the n components of final demand, y t, t = 1, 2, ..., as well as the levels of

all outputs at the initial point of time, x–, are assumed to be given. Hence we have a system of n

difference equations. A major shortcoming of the simple model presented here is that with an

arbitrarily given time path of final demand and some given initial endowments it cannot be

guaranteed that the solution to the model will always have non-negative output levels. Closely
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connected with this is the model's inability to deal with situations in which one or several

industries do not fully utilize their productive capacity, but exhibit excess capacities. As

Leontief stressed: "While bringing to the fore the crucial role that a complete set of capital

coefficients has to play – in addition to a complete set of current input coefficients – in the

detailed description of the structural framework of a given economy, such a set of difference

equations is too rigid a tool to be used to describe and project the actual process of economic

development and change" (Leontief, 1987, p. 863).

This is certainly a valid observation. In order to be useful in applied economics, the model

needs to be adapted quite a bit.1 However, this does not mean that there are no sensible uses to

which the dynamic Leontief model can be put. In this paper we will show that it serves well the

purpose of illustrating in a multisector framework the potential for endogenous growth. To do

this we shall use a simplified form of the dynamic Leontief model, setting aside all fixed capital

items and thus matrix B . There will be only circulating capital goods in the system; the matrix

of material inputs will be given by A. Notice that A does not contain depreciation quotas of

durable instruments of production, simply because there are no such instruments. It would not

be difficult, however, to take into consideration also fixed capital. Yet in order to solve the

problem of depreciation this would necessitate the formulation of a price model. Without such a

model and a formalisation of the problem of the choice of the optimal patterns of utilization and

optimal lifetimes of fixed capital items, the problem of depreciation could not be solved

consistently. Simply introducing some ad hoc rule such as "depreciation by evaporation" or

"depreciation by radioactive decay" is not good enough (see for instance, Kurz and Salvadori,

1995, chs. 7 and 9).

The main purpose of this paper is to relate the simplified version of the dynamic input-output

model developed in the next section to some of the "new" growth models.

3. Endogenous growth and the dynamic Leontief model

Let us take a dynamic Leontief model of the type

xT
t  ≥_ xT

t+1A + αtd
T, (1)

1 See for example the adaptation of the model to the study of the employment effects of the

diffusion of new technologies in Leontief and Duchin (1983) and Kalmbach and Kurz

(1992).
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where d is a vector of consumed commodities and α is a scalar. A is a Leontief matrix, but

contrary to the usual formulation of the open Leontief model it includes a sector (a row)

portraying the consumption of workers which at the same time is assumed to portray the

production of labour by means of commodities and labour; and contrary to the usual

formulation of the closed Leontief model it does not include consumption by capital owners. In

the following the consumption vector d will therefore be interpreted as referring only to the

consumption of members of the society other than workers. Below in Section 4 we shall

assume that these people are the capital owners whose income consists of profits (or interest)

and who will spend their income partly on consumption goods (in proportion to vector d, i.e.

all commodities are considered perfect complements) and partly save and invest it. It should be

pointed out that this approach is similar to that of the classical economists from Adam Smith to

David Ricardo, who considered labour as generated within the system and adjusted to the needs

of capital accumulation. The most simple conceptualisation possible, which is the one adopted

here, is that labour is made available in whichever amount is needed at a given unit cost, which

is equal to the given real wage rate.

In this conceptualisation labour is accordingly considered a producible factor of production.

This assumption is invoked because, as we shall see in Section 4, in the "new" growth literature

something similar is done: there it is suggested that "labour" can be treated as, or rather replaced

by, a factor called "human capital", that is, an input in the production process that can be

produced and accumulated. The removal from the picture of all factors that are non-accumulable

is indeed one of the "devices" by means of which in this literature the way is paved for

unhampered perpetual growth.

Our model is not determined until the α's are determined and we know which of the weak

inequalities are satisfied as equations. A common way to determine the model is to assume that

a planner or policy maker fixes an objective function for each period t

f(αt, t)

so that it is possible to maximize

∑
t = 0

∞
f(αt, t)

under the constraint (1), where x t is nonnegative for each t, and x0  ≤_  x–, where x– (> 0) is the

vector of the stocks of goods available at the beginning of the time considered.
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Let us first consider two simple examples. These are but steps towards a third example, which

prepares the ground for a comparison with some of the "new" growth models.

Example 1: In the first example it is assumed that the policy maker focuses attention exclusively

on consumption at time θ. This would obviously be a policy that could be characterised in terms

of the famous dictum "après moi le déluge"; the purpose of this example is purely illustrative. In

this case

∑
t = 0

∞
f(αt, t): = αθ

and, therefore, the problem to be solved consists in

max αθ (2)

s. to xT
t  ≥_ xT

t+1A + αtd
T

x t ≥_ 0

αt ≥ 0

x0 ≤_ x–.

It is easily checked that αθ can be determined as the solution to the problem

max αθ

s. to αθdTAθ ≤_ x–

αθ ≥ 0

Hence

αθ = 








max
i

  
dTAθei

x–Tei

-1

Then, the solution to problem (2) is completed by

x t = αθdTAθ-t 0 ≤ t ≤ θ

αt = 0 t ≠ θ

x t = 0 t > θ .
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Example 2: The second example is also of the kind described, but slightly less bizarre: now the

policy maker's attention focuses on consumption at two different times and attributes different

weights to the two consumption levels:

∑
t = 0

∞
f(αt, t): = ψαθ + (1 - ψ)ατ.

Hence the problem amounts to

max ψαθ + (1 - ψ)ατ (3)

s. to xT
t  ≥_ xT

t+1A + αtd
T

x t ≥_ 0

αt ≥ 0

x0 ≤_ x–.

It is easily checked that αθ and ατ can be determined as the solution to the problem

max ψαθ + (1 - ψ)ατ

s. to αθdTAθ + ατd
TAτ ≤_ x–

αθ ≥ 0

ατ ≥ 0

Then, the solution to problem (3) is completed by

αt = 0 θ ≠ t ≠ τ

x t = αθdTAθ-t + ατd
TAτ-t 0 ≤ t ≤ θ

x t = ατd
TAτ-t θ < t ≤ τ

x t = 0 t > τ

Example 3: In order to facilitate a comparison with the "new" growth theory, let us now

consider the case in which
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∑
t = 0

∞
f(αt, t): = ∑

t = 0

∞
(1 + ρ)-t(1 - σ)-1(α1

t
-σ - 1),

where ρ can be interpreted as a rate of time preference at which consumption at future dates is

discounted, and 1/σ (1  ≠ σ > 0) can be interpreted as the elasticity of substitution between

present and future consumption. Hence the problem amounts to

max ∑
t = 0

∞
(1 + ρ)-t(1 - σ)-1(α1

t
-σ - 1) (4)

s. to xT
t  ≥_ xT

t+1A + αtd
T

x t ≥_ 0

αt ≥ 0

x0 ≤_ x–.

It is easily checked that the α's can be determined as the solution to the problem

max ∑
t = 0

∞
(1 + ρ)-t(1 - σ)-1(α1

t
-σ - 1) (5)

s. to  ∑
t = 0

∞
αtd

TAt ≤_ x–T

αt ≥ 0

It is easily checked that the Kuhn-Tucker-Lagrange conditions amount to

αt = [(1 + ρ)tdTAtz]-1/σ (6a)

 ∑
t = 0

∞
αtd

TAt ≤_ x–T (6b)

z ≥_ 0 (6c)

 ∑
t = 0

∞
αtd

TAtz = x–Tz (6d)

where z is a vector of Lagrangians. Once this problem is solved, the solution to problem (4) is

completed by
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xT
t  =  ∑

τ= t

∞
ατd

TAτ-t

Problem (5) is not of an easy solution. However, if we are interested in the steady-state solution

only, then the problem is relatively simple. In this case x– cannot be arbitrary, but must be

chosen in such a way that

αt = α0(1 + g)t,

where g is a constant to be determined. Since equations (6a) and (6.c) hold, and since, on the

assumption that matrix A has n distinct eigenvalues,

At = TLtT-1,

where T is the matrix of the right eigenvectors of matrix A,  L is the diagonal matrix with the

eigenvalues of matrix A on the main diagonal (AT = TL),

z = βq,

where q is the Perron-Frobenius right eigenvector of matrix A normalised in some way (we

will use the normalisation dTq = 1). Hence we have

αt = [(1 + ρ)tλtβdTq]-1/σ = β-1/σ[(1 + ρ)λ]-t/σ

 ∑
t = 0

∞
β-1/σ[(1 + ρ)λ]-t/σdTAt = β-1/σdT{I - [(1 + ρ)λ]-1/σA}-1 = x–T

xT
t  = β-1/σ[(1 + ρ)λ]-t/σdT{I - [(1 + ρ)λ]-1/σA}-1 = [(1 + ρ)λ]-t/σx–T

Note that matrix I - [(1 + ρ)λ]-1/σA is invertible with a positive inverse if and only if

(1 + g) = [(1 + ρ)λ]-1/σ < λ-1. (7)

Then we assume that inequality (7) holds from the beginning. Inequality (7) means that the

actual growth factor [(1 + ρ)λ]-1/σ is smaller than the maximum one, λ-1. This requires that for

a given σ and a given λ, the rate of time preference ρ is sufficiently large, which will be

assumed.

4. A comparison with the "new" growth literature

The last few years have seen the publication of a bewildering variety of "new" growth models.

Despite all their differences, these models share some common features, the most important of
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which is, of course, that the steady-state rate of growth is determined endogenously. This is

indeed the salient feature of this kind of models vis-à-vis the Solow model. In the latter the

actual rate of growth depends on the saving rate and thus agents' behaviour, whereas the

steady-state rate of growth does not. There is no endogenous growth in the very long run in the

Solow model. Seen from this perspective, the main novelty of the "new" growth models

consists of also rendering the steady-state rate of growth an endogenous variable.

The reason why in the Solow model the long-term rate of growth is exogenous rather than

endogenous is the presence of a non-accumulable factor, labour, which is responsible for a

diminishing marginal product of capital as capital accumulates relative to labour (see Kurz and

Salvadori, 1998a). In order to have perpetual growth over and above the growth of the labour

force (on the assumption that the latter is always fully employed), the marginal product of

capital must not fall to zero (or to some lower boundary, given by a minimum level of the rate

of profit at which accumulation ceases). Hence there are essentially three ways open to "new"

growth theory: provide arguments that guarantee either that the curve giving the marginal

product of capital does not fall, but is a line parallel to the abscissa, or falls, but its fall is

bounded from below at a level larger than zero (or larger than the minimum rate of profit), or

instead of falling rises. As can be shown, the first route was chosen in the so-called "linear" or

"AK models" (Rebelo, 1991, and King and Rebelo, 1990); the second in the model by Jones

and Manuelli which assumes a convex technology with returns to capital sufficiently bounded

from below (Jones and Manuelli, 1990); and the third by models based on the formation of

human capital and the externalities associated with it (see, in particular, Lucas, 1988) or by

models formalising research and development and the endogenous generation of technical

progress (see, in particular, Romer, 1986).

Since the dynamic Leontief model presupposes a given linear technology that does not change

over time, the natural counterpart of it in the "new" growth literature are the linear or AK

models. We shall therefore focus attention on the latter.

It is a characteristic feature of the linear growth models that they set aside all factors of

production that are non-accumulable. In its simplest version it is assumed that there is a linear

relationship between total output, Y, and a broad measure of the accumulable factor capital, K,

both consisting of the same commodity:

Y = AK, (8)
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where 1/A is the amount of that commodity required to produce one unit of itself. Capital is

assumed to encompass both physical and human capital.2 In this model time is assumed to be

continuous. Because of the linear form of the aggregate production function, the marginal

product of capital, which equals the instantaneous rate of profit, r̂, is given by

r̂ + δ = 
Y
K  = A, (9)

where δ is the exogenously given rate of depreciation.

The continuous time framework prevents an immediate comparison of the AK model with the

above dynamic Leontief model. In particular, one might be inclined to think that focusing

attention on circulating capital only, as in the present dynamic Leontief model, amounts to

assuming that in the AK model δ would have to be set equal to unity. However, whereas with

discrete time the assumption δ = 1 would indeed mean that all capital is consumed in unit of

time, in a continuous time framework that assumption would mean that capital is consumed at

the same instant of time at which produced commodities leave the production process. Yet with

no time elapsing between inputs and outputs, there would simply be no capital at all: with

continuous time, the premise δ = 1 would remove all capital from the picture and not only fixed

capital. Moreover, in order to allow for the possibility that a capital good is consumed in a finite

amount of time, we would have to introduce an infinite number of commodities for each capital

good, each of these infinitely many commodities representing the capital good at the appropriate

(continuous) vintage. With continuous time, then, the idea that a capital good depreciates in the

sense that a part of it evaporates is not only the simplest one available to capture the idea of

capital, but also the only one which, as far as we know, avoids the necessity to have recourse to

an infinite number of capital goods. (This does not mean, of course, that it is fully satisfactory.)

Now, as equation (9) shows, it is a remarkable fact that in the AK model the rate of profit is

determined by technology alone. Then the saving-investment mechanism jointly with the

assumption of a uniform rate of growth, that is, a steady-state equilibrium, determines a

2 In King and Rebelo (1990) two types of capital are distinguished: physical and human

capital, and it is assumed that both kinds of capital goods as well as the consumption

good, which is taken to be identical with the capital good, are produced by means of both

kinds of capital goods.
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relationship between the instantaneous rate of growth, ĝ, and the instantaneous rate of profit, r̂ .

Rebelo (1991, pp. 504) obtains3

ĝ =  
A  -  δ  -  ρ̂

σ
   =  

r̂  -  ρ̂
σ

 , (10)

where ρ̂ is the instantaneous rate of time preference. Hence the growth factor (defined with

respect to one unit of time) equals

e(r̂ - ρ̂)/σ.

Equation (10) is obtained when savings are determined on the assumption that there is an

immortal "representative agent" who is concerned with maximizing an intertemporal utility

function, u = u(c(t)), over an infinite horizon. Choosing the path that maximizes consumption

involves maximizing the integral of instantaneous utility,

∫
0

∞
 e-ρ̂tu(c(t))dt.

In the case under consideration this integral is maximized subject to constraint (8), where Y =

c(t) + K̇  and

u(c(t)) = 
c(t)1-σ

1  -  σ
   .

We may now compare this model with the above dynamic Leontief model. With labour as an

endogenously produced factor of production whose costs of production are given and constant

in terms of given amounts of wage goods and labour, and assuming that there is free

competition in the economic system, the rate of return on capital r will tend to be uniform across

all sectors. In this case the normal prices ruling in the above dynamic Leontief model are given

by the following equation

3 In the case in which the average propensity to save s is given from outside, Rebelo (ibid.,

p.506) obtains

ĝ = s(A - δ) = s r̂ .

This is formally identical to the famous "Cambridge equation" of the post-Keynesian

theory of growth and distribution, advocated by Kaldor, Robinson and Pasinetti.
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(1 + r)Ap = p,

that is,

Ap = λp,

where

λ = 
1

1  +  r .

Scalar λ is the Perron-Frobenius eigenvalue of matrix A. The profit factor is λ-1 and is thus

equal to the maximum growth factor compatible with the given conditions of production (and

productive consumption of the workers). From equation (7) we have

1 + g = 




1  +  r

1  +  ρ
1/σ

 .

Taking into account that

r̂ = log(1 + r)

ρ̂ = log(1 + ρ),

we have that

1 + g = e(r̂ - ρ̂)/σ.

5. Concluding remarks

The paper has looked at a special version of the dynamic Leontief model from the perspective of

so-called "new" growth theory, whose characteristic feature, in contradistinction to the Solovian

model, is that the long-term rate of growth is determined within the model. It has been shown

that a dynamic Leontief model which fulfils the requirement of endogeneity of the steady-state

growth rate exhibits a close family resemblance with the linear variants of "new" growth theory,

such as the AK model. In both kinds of models the endogeneity of the growth rate is due to the

fact that there are no primary factors in given (or exogenously growing) supply that could

constrain economic expansion. Natural resources are set aside and it is suggested that there is a

technology producing a surrogate for what the classical economists (and Solow) called

"labour". In the "new" growth literature that factor has merely been given new names and enters

the stage either as "human capital" or "information" or "knowledge". If there is such a
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technology and if it fulfils the usual properties attributed to production processes, then the rate

of profit is either technologically given or, if there is a choice of technique, it results from the

cost-minimising behaviour of producers. For a given and constant rate of profit, saving

behaviour determines the rate of growth.
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