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We show that resulisbtained in the Sraffian literature on joint production are relevant for

input-output economists working in the tradition lofontief. We concentrate upon the

‘adjustment’ property, i.e. the ability of a system to cotb any variation infinal demand.

We identify a number of systems which possess the adjustment proplerspecial attention

for economies using fixed capital goods.



1. SRAFFA AND LEONTIEF : DIFFERENCES IN AIMS AND FORMALIZATIONS

For bothSraffa and Leontiefproduction constitutes the heart of the econosygtem. They
both conceive it as a circulgorocess, inwhich commoditiesare reproduced byneans of
commodities and labouY.et in spite of this common basic framewotkere haseen little, if
any, contact between th8raffa-inspired andhe Leontief-inspired approaches. (One notable
exception is Pasinetti, 1977.) The gap betweenwheconstructions reflects difference in
objectives: roughly speaking, Sraffasn is mainlytheoretical and orientedwards thestudy

of prices and distribution, while Leontief's description of skreicture of areconomy igmainly
empirical and oriented towards economic policy.

Whatever the ltimate objective, it is natural to begthe analysis of a linear model of
production with the case of single-produsystems. Thecore of any linear model of
production, be it one of the Leonti¢t951), vonNeumann(1945-46), orSraffa (1960)
variety, consists of a pair of matrices, 8), whereA represents inputs arloutputs: When
every process producesxactly one commodity,the outputmatrix can bereduced to an
identity matrix after a convenient choice gdhysical units. In that casell the relevant
information is contained ithe so-called ‘input-outputtnatrix A, which is in fact an input
matrix only.

A crucial property of single-product systems is that theyccgewith anyvariation infinal
demand, provided that thactivity levels of the processeslready in operation are
appropriately chosen. Weillvsay that a system with this characteristic tresadjustment
property: as soon as it &ble toproducesomepositive netproduct, itcan produceany
semipositivenet product. That property istimately connected with thepositivity of the

Leontief-inverse matrixl - A)™.



The divergence between Sraffa’s and Leontief's formalizations comes to the sudaca as
as one considers multiple-product systenes,systems in which at leashe process produces
several goods simultaneously. From a theoreticgoint of view, the only adequate
formalization consists in using autputmatrix B which admits several positive elements in at
least one of itgolumns. Inthe literature based upon vbleumann’s or Sraffa’'sork, this is
the standard practice. The input-output (I€pgcialists working ithe tradition of Leontief,
however, stick to a representation in terms ofaalified input-outputmatrix A (cf. Miller &
Blair, 1985, for asurvey of different possibilities, andop Jansen & Ten Rad 990, and
Konijn & Steenge, 1995, for recent contributions in this field).

The central question addressed in fraperis: when is it possible to replatee ‘extensive
form’ (A, B) by a ‘reduced form’ A, 1)? From a theoretical point of viewhe answer is:
never! A single-product systecannotmimic the behaviour of a multiple-product system in all
respects, however small the divergence from single produstidde do understand, however,
the great advantage simplicity introduced by approximatintpe true dataA, B) by a proxy
(A, 1). In order tojustify that current practice, onenight for instance try to estimate the
distortions it introduces.

The path followed irthis work is slightly different. We start from Sraffa’s theoretical
approach, and show th&raffian analysissheds new light orthe problem. Weanalyze a
multiple-product system in its extensive form amdnder if it behaves like a single-product
system in someespects. The property we stress isfidvability of the economy with respect
to changes in quantities. sther words, the question is tdentify some specifidypes of
multiple-product systemwhich still havethe adjustment propertyentioned above. They are

characterized by the fact that the inverse maBix A) ™" is positive(or semipositive, in case of



decomposability) andre called ‘all-engaging’ (respectively, ‘all-productive’) systerifiey
will be studied in Section 3.

The simplest case iwhich the adjustment property is metwhen everyprocess adits a
main product. Although the output matrix is then not diagonal, it is nevertheless a matrix of the
dominant diagonal type, artie nature of each processdsectly determined by itsnain
product. The mattebecomes more complex when sompecesses daot have amain
product,especially if weintroduce thepossibility of choice amongrocesses. Weillvsaythat
a system possessi® super-adjustment propertyeifery viableselection of processes has the
adjustment propertyinterestingly, such a system happens to be a non-substitution economy.
One way ofidentifying systems havinthe super-adjustment property consistlassifying
processesvhich compete with one anothee.). because theproduce thesame dominant
product) in thesame industry, morgrecisely inthe samesector. Section definesthe general
concept of sector without referring to dominant products.

In the presence of pucapital gpods,i.e. goodswhich are demaded onlybecause they are
indispensablegfor the production of othecommodities, the adjustment property must be
modified: it means thahe economisystem caradaptitself to any semipositivénal demand
vector,knowing that the components of thadctor corresponding to pupapitalgoods are
identically zero (Section 5).

An alternative way tdreat thesame problem consists @liminatingthe purecapitalgoods
from the economy by ‘integratingthe processes in suchway thatthe integrated processes
have automatically &ero net product of pureapital godls. Intuitively speaking, the
adjustment property is expected to hold for #wnomy undetwo conditions: first, the

integration, i.e. the procedurewvhich eliminatesthe purely intermediate goods, is smooth



enough; and second, the integrated econavhich isobtained afteelimination ofthe capital
goods, has the adjustment property. Section 6 examines the question in more details.
The identification ofthe different types of multiple-product systems which, lsiagle-
productsystems, possefise adjustment property, is the result of the endeavoursofder
of Sraffian economists. Theaim is to explore the pathndicated by Sraffa. They do not
hesitate to criticizéhe treatment ojoint production in I-Oanalysis, especially that of fixed
capital. As we show in thipaper, however, their critique albas a constructive aspect: the
results uporwhich wereporthere arausefulfor economists interested in the Sraffa-approach
as well ador thosespecialized in-O analysis. As dy-product of their activity, so to speak,
Sraffians make ammportant ‘outside’ contribution to the foundationsléd analysis. In our
view this exemplifiesthe vitdity of the Sraffian approach. Our papeshould be seen as an
attempt to prompt aialogue between economists of b&thmps’ based on their common

conception of production.

2. THEORETICAL BACKGROUND AND NOTATION

We consider an economy in which different production processes are available to produce
commodities. All processes operate under constant returns to scale. Production [freckss,

m) is described by a nonnegatiel vector of commodity inputs, a semipositiveix1 vector of
commodity output$, and a labour input. In the present study the labour inputs are ignored. The
activity level of processis denoted ag, a nonnegative scalar. For the economy as a whole, the
nxmmatrix A represents then input vectorss;, thenxm matrix B them output vectors;, and the

mx1 vectory the m activity levelsy.. The couplet 4, B) is called a ‘system of production’ or

‘system’.



If m=n (the numbers of processes and commodities are equal) the system is square. The
matricesA andB are semipositive, and matimust have at least one positive element in each
row if all commoditiesare to be reproduced. A single-product process has all its output

coefficientshy equal to zero, but one. By the constant returns assumption, the non-zero coefficient

can be set equal to one. Hence a system which can reproduce itself, consists of single-product
processes only, and is square, is represented by thé& gaio¢, more briefly, by the input matrix
of technical coefficients.

A square system s called non basic (or decomposable, or reducible) when Matrd&scan

be written as:

A Ao 0 B N ith dJ d
= , = wi car = car
Ay Ag Bry Brg

In this casehe commodities belonging td reproducghemselves by means thfe processes

in J. In other words, therexists a sub-economy whigtorks autonomouslyFor the sake of
simplicity, we exclude thisase most of théme, i.e. the economy is assumed to basic
(Sraffa’s terminology) or indecomposable, or irreducible. The question is discussed in
Section 3.

We buildupon resultavhich belong taboth the Leontief-oriented and the Sraffa-oriented
literature. The concept odll-engaging system comes frothe Sraffian tradition: it was
introduced by Schefold (1971), in a Ph.D. dissertation enfiledSraffa on Joint Productign
and refined in Schefoldl978). The notion of a non-susbstitutieconomy, on thetherhand,
was developed in papers by Arrow (1951), Georgescu-Roegen (1958pangklsor(1951)
dealing with Leontief’'snput-outputmodel. Withregard to non-substitution in the presence of
fixed capitalour results should be situated in a line of contributions starting Sathuelson

(1961), Mirrlees (1969), Stigitz (1970), Salvadori(1988) and Bidard (1996b). Wemly



believe,however, thabur results are of interest for I-€conomists, too. Directly andirectly
the question we address here concerns the generalization of the Leontief-invexse (

Sraffa andhe Sraffiansare mainly concerned with the properties of the pri@etorwhich
ensures a unifornprofit rate amongall industries. From a formgboint of view, any price
equation can be associated with a ‘dual’ quantity equation obtained by transpositius. In
operation the priceectorbecomes aector ofactivity levels,the labour vector is transformed
into a final demandvector, and the profitrate is read as a growth rate. Hostance the
Ricardian trade-ofproperty,which holdstrue in single production, states that tkeal wage
and the profitrate vary in opposite directions. Once reinterpreteddoglity, the property is
read: for agivenfinal demandall activity levels increase the rate ofaccumulation increases.
Such reinterpretations facilitathe dialogue with economistspecialized inl-O analysis.
Sections 3 to 7 statec@rtain number of useful resufsr economists working in one or the
other field. No proofs are given, but the interested reader will find the reference®tigitred

papers.

3. ALL -ENGAGING SYSTEMS

3.1. The adjustment property

In this andthe next Section wassume thaall commoditiesmay beconsumed (the case in
which there is ndinal demand for somgoods vill be examined irSection 5).The notion of a
productive(or viable) system is the same for single- or multiple-product systeatausgive it

in the general case:



Definition 1. A techniqueA, B) is said to be (strictlyyiable if it can produce ghysical net
surplus of any commodity. Formally, there is an activity veggarch thaf:

Oy=0, By- Ay>0 (2)

A system is productive whethe coefficients ofthe inputmatrix A are small enough. The
productivity hypothesis is a weak condition: nonproductive economics cmtldeproduce

themselves and are not observable. The property we are mainly interested in is:

Definition 2. A technique hathe adjustment propertyor isadjustablg if it can produce any
semipositive net final demand vector. Formally:

0d=0, Oy=0 By- Ay=d (2)

We begin by assuming th#ite system issquare,i.e. it contains asmany processes as
commodities; in Section 4 we abandon this restrictive assumption. Inpjadtction, the
activity levelsy solution to (2) arg = (B - A)™'d. This formula is economically acceptable if the
activity levelsare semipositive, anthe way to ensure this e semipositivity ofthe inverse
matrix B - A)™". The difference between single and joint production is that, in the first case, the
inverse matrix I( - A)* is automatically semipositive a®on as the input-outpmatrix A is

productive. No similar property holds in general joint production.

Theoreml. The squarsystem A, B) hasthe adjustment property if arahly if matrix B - A)

is regular and admits a semipositive inverse.



For the sake o$implicity, we firstconsider theslightly more restrictive condition that the

inverse matrix is in fact positive.

3.2. Characterizations of all-engaging systems
Definition 3. The square systerA,(B) is all-engagingif matrix (B - A) is regular and admits a

positive inverse.

An equivalent formulation of all-engagingness which is very converf@ntconomic

analysis is:

Theoren®. The square systemd(B) is all-engaging if and only if properties (3) and (4) hold:

{yz0,(B-Ay=0 O vy>0 (4)

Relation (3) is the ‘weak’ productivityor viability) hypothesis. Relationship (4) igad: in
order to obtain somenet productall processesnust be operated. It is nobdbvious that
Definition 3 and Theorem 2 are indeed equivalent.

An all-engaging system retainganyeconomic properties of single-product economies. For
instance, the adjustment propertyfimal demand stillholds if therate ofaccumulationg is
positive andnot too high. The notion of all-engagingness is easilyeneralised tog-all-

engagingness.



Definition4. Letg (g > -1) represent a rate atcumulation. The squasgstem(A, B) has the

g-adjustment property it can produce any final demand vectbafter accumulation at rate

An all-engaging system ig-all-engaging atg = 0. Conversely, let us replace matix by
(1+g)A in relations (3) and (4). Theorem 2 then gives a characterizatigralbengaging
systems. Thepecificinterest in thegeneralization othe notion ofall-engagingness to that of

g-all-engagingness is shown by the following result:

Theorem3. If (A, B) is g-all-engagingfor somevalueg, the setS on which it remaing-all-
engaging is an interve® =] gnin = @, Gnax= G. The upper bound d8 is characterized
by the properties:
0g>0 [B-(1+G)Alq=0 (5)
Ny=0, [B-(1+G)Aly=0 (6)
(In relation (5)symbol [1 g indicatesthe existence and uniqueness of activdyelsq, up to a

positive scalar.)

Theorem 3 shows that an all-engaging systemainsg-all-engagingfor g > 0, provided
thatg is smaller thanhe upper bouné. ValueG is themaximalaccumulatiorrate, asglefined
by von Neumanr(1945-46). Relationship (Sneans thathere exist positiveactivity levels
such that theeconomy moves on a regulgrowth path at thenaximal growth rateG, and
these activity levels are uniq(ep to apositivefactor).Relation (6) means that no surplus can
be obtained atate G, whatever theactivity levels. Thus scalat appears as thmaximal

feasible rate, ang as the von Neumann activity levels for systé&mg).>

10



In basic singleproduction,whenA is a semipositive indecomposable input matrix, matrix
(I - (14g)A)" is positive forany g smallerthanG, whereA = (1+G)™" is the Perron-Frobenius
eigenvalue ofA. The Perron-Frobenius eigenvectors are positiveuarglie up to dactor of
proportion. Theorem 3 characterisgsll-engaging systems witkimilar properties. It must
however be noted that jaint production thevalueG is a root ofde{B - (1+g)A) = 0, but not
necessarilythe first positiveroot (which isthe case in single production, as a consequence of
the fact that the Perron-Frobenius root of a matrix is the maximatbi8raffa, 1960, §42).

Up to now wehave considered an all-engaging systana, byincreasingg, we have
obtained g-all-engaging systems untij reaches amaximal value G which has specific
properties. Let us now look at tsame problenthe otherway around,i.e. we start from the
upper bounds and try to reach thealueg = 0 by decreasing continuously. If theg-all-
engagingness property is preserved during this operation, then spstmg all-engaging.

The operation can indeed be performedviable basicsingle-production system. Inlaft
neighbourhood of thenaximalgrowth rateG, defined by 1& = 1/A as indicated above, and
for which conditions (5) and (6hold, the system is indeedy-all-engaging, and this
neigbourhood contains the valge O.

The first differencedue tojoint production is that thexistence of a valu& suchthat
conditions (5) and (6) are met ot guaranteed. In thatase, thesystemcannot beall-
engaging. Assumthe existence of such a value. Then it can be shown &a)(is indeed-
all-engaging on some left neighbourhood & The seconddifference is that this
neighbourhood doesot necessarily contain valug= 0. The system is all-engaging when, in
terms of the se§ described in Theorem 3, we hage< 0. To sumup, all-engagingness
depends on the existence of a vaBusatisfying (5)and (6), and the fact thgg is low enough.

While thefirst necessary condition caasly bechecked by studyinthe spectral properties of

11



(A, B), there does nagxist a simple rule to check thgt is indeed negative (a spte formula
for a lower bound fog, can be found, but what is expected in the present case is an upper

bound).

3.3. All-productive systems

We now turn to a slightly more general notion than all-engagingness:

Definition 5. The squarsystem A, B) is all-productiveif matrix (B - A) is regular and admits

a semipositive inverse.

According to Theorem 1, the adjustment property htiaks for squareystems if ananly

if the system is all-productive. The modified version of Theorem 2 now reads:

Theorem4. The squarsystem A, B) is all-productive if ancbnly if properties (7) and (8)
hold:

{y=20,(B-Ay>0 O y>0 (8)

In single production &iablesquaresystem A, 1) is automatically all-productive, and this is
why the adjustment property then holds without restriction. It is moreaiengaging if and
only if it is indecomposable,e. if there does noéxist aproper subset ofommodities and

processes which work autonomously.

12



In joint production aviable squaresystem A, B) is not alvays all-productiveBut, if it is,
the distinction between all-productive systems and all-engaging systems depuitady on
the fact that A, B) is decomposable or not, with ogealification. A numerical example with

two commodities and two processes illustrates the exception.

Example 1. Consider the system:

SR

(A, B) isg-all-engaging fogin S =] 0,G = (5+/21)/2 [. Forg = 0, we have:

a 1o
o-nt 9

This example illustratethe only case where an irreducible systef B) is all-productive

but not all-engaging:

Theorenb. If (A, B) is all-productive but not all-engaging:
— either @, B) is irreducible and O ishe lower boundy, of the interval S defined in
Theorem 3;
— or (A, B) is reducible, andhe set ornwhich (A, B) is g-all-productive is an interval
S=[go, G[ which contains valug = 0. The upper boun@ of Shas the two properties:
0q20, [B-(1+G)Aq=0 (9)

Oy=0, [B-(1+G)Aly>0 (10)

13



If relationships (5) and (6pre satisfied, then A, B) is g-all-engaging on somdeft
neighbourhood of5. On the contrary, thexistence ofG satisfying (9)and (10) does not
guarantee thabis nonempty. This difference is a reason to give some privilege to the notion of
all-engaging system.

Sraffa’s readersnay have been surprised ltlie notion ofdecomposability we consider.
Though it is anmmediate extension dhe notion used for single-produststems, it isiot the
one used byraffahimself. What happens ithat, injoint production, there does nekist an
all-encompassingotion of decomposability: Sraffatoncept of anon-basic system is indeed
relevant for the type of economadfect he contemplatgshe incidence of éxation on prices;

cf. Sraffa, 1960, § 65), but less so for the study of the adjustment property.

3.4. Comparison with the 1-O approach
In both theSraffian andthe I-O literature aasic ideafor the analysis ofmultiple-product
systems is to identifgases inwhich someproperties of single-produdystems stillhold.
Perhaps the most important propertyhis regard is theapability ofthe economisystem to
adaptitself to a givenfinal demandvector. Let usbriefly compare theSraffian andthe 1-O
approaches to the problem, assuming the system is square.
As explained above, Sraffians start from the equation:
By = Ay+d (11)
Observing that the solution of this equation is:
y=(B-A"d (12)
they are especiallyinterested infinding conditions whichensure thesemipositivity of the

inverse matrix® - A)™.
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I-O economists, on thetherhand,startfrom the following relationship ¢f. Kop Jansen &
Ten Raa, 1990; Steenge, 1990):

VTe=Ue+ f (13)
which is closelyrelated to equation (11). Equation (13) is of course expresseonieyterms,
V' beingthe make-matrix(counterpart ofnatrix B), U the use-matricounterpart ofmatrix
A), andf the vector offinal demand(counterpart of vectod). The equation is meant as a
description of a given economic system, in whiatse the vectoe represents theffective
activity levels ofthe different industries (all equal tone by convention). I-@conomisthave

tried to transform expression (13) into the following pseudo-single-product system equation:
x=Ax+f (14)
with x =V'e and A representing a ‘surrogate’ input-outpugtrix. This leads to material
balance equation:
AV Te=Ue (15)
expressing that the inputs required to produce to thedotpltV'e are equal to thavailable

inputs. In thd-O literaturemanyways have beesuggested talefinethe input-outputmatrix

A . A consensus seems to have been reaahmehd the solution based upon swcalled

‘commodity-technology’ assumption, which leads to the following definition:
A=uvhH? (16)
The total output vector corresponding to the final demand vedta therefore given by:
x=(-A) =l Uy T)'l]_lf (17)

which explains why many-O economists ar@articularly interested in determining whether

matrix U(V") ™" is semipositive or not.

15



Let us now compare the properties of both 8raffian andthe the I-O solutions. To
simplify things, we assume that the physical units in wAicB andd are expressed are chosen
in such a way thathe prices ofall goods areequal to oné.Under these circumstances, it is

easy to see that we have:
vT=BY, U=AY, f=d, y=Ye (18)
where Y represents a diagonal matrix withe elements ofvectory on the nain diagonal.
Relationg(18) allows us to establish a link between systébi3 and (13).
In the Sraffianframework, the adjustment property holds if amdy if (B - A)" > 0. Using
expressiongl8), it can be shown that the equivalent condition in I-O notatio'is\)™* = 0.

Onemay wonder whethethis condition translates into samilar property of thegeneralized

Leontief-inverse matrixi[- U(V")"]™. The following identities are easily established:
vT-ur=vH v (19)
(1o =v Ty T-u)? (20)

Therefore:

1. If the adjustment property holdse. if (V'-U)*=0, the generalized Leontief-inverse
matrix is also semipositive (this can be inferred fré@d), given thatV'>0). Note,
however, that the constructed input-output matif¥™)* need not be semipositive.

2. If the generalized Leontief-inverse matrix is semipositive, if [I - U(V)'=0, the
matrix (V" - U)"* neednot besemipositive, as can be deduced frd). Hence itmay be
that the system is not capable to adapt itself to an arbitrary final demand vector.

3. If the constructed input-outpunatrix is semipositivej.e. if U(V)™* >0, the matrix

(V" - U)"* again need not be semipositive; hence the adjustment may not be satisfied.

16



In conclusion, it isour opinion thatthe importance attributed blyO specialists to the
semipositivity ofthe constructed input-outpuatatrix U(V")™ or of thegeneralized Leontief-
inverse matrix I - U(V")"]™, is somewhat misplaced. It appears that more attention should be

given to the semipositivity of matrix/{ - U)™.

4. SUPER-ADJUSTMENT AND SECTORS

4.1. Choice of technigques and super-adjustment

Typical for both all-engaging and all-productive systems is thlhtvailableprocesses il be

activated as soon as #idly positive net output vectomust be producedrhis is clearly a
limiting case: in more realistic settingsere wll be muchmore processes thanlivbe used
effectively. Usuallysome kind of rule is specified accordingwhich a choice vl be made
among theexisting processese(g. cost minimization at a givemate of profits).This is the
domain of the theory of ‘choice of techniques’; we deal with one aspect of it here.

To distinguish the cases in which a choice has to be made from those in which no choice can
be made, we first introduce a convenient notati@M = {1, 2, ...,m} be the set oavailable
processes isystem A, B). Given asubsetM, of M, the technique denoted, B,) is the
system in which the set of available processes is restricidgl to

We start from the notion of minimality:

Definition 6. The systemA B) is minimal if it is viableand none of its techniques( B,) is

viable.

17



All-engaging and all-productive systenase minimal. This can bededuced from the

following fundamental result:

Theoren6. If a multiple-product system has any two of the following three properties:
(i) itis minimal;
(i) itis square;

(ii) itis adjustable;

it has the third one. It is thexll-productive

Thingsare more complicated faron-minimalsystems. The issue atake is not senuch
whether thesystem is adjustabldyut whether the techniqu@r techniques) which iV be
chosen is adjustable. Here we miat specifythe rulewhich governs the choice of techniques,
but simplyassume that whatever it is, it must leadthe selection of one or mongable
techniques. Under that assumption, it is of interest to know whetheroorll viable

techniques are adjustable. This is what we mean by super-adjustement:

Definition 7. The systemA, B) hasthe super-adjustment properifevery techniqueAq, Bq)

which is viable is also adjustable.

4.2. Sectors
Let us reconsider the caseadfproductive systems. A sple case of an all-productive square

system A, B) occurswhen matrix B - A) has non-positive off-diagonal coefficients and a

18



positive diagonal withgreat enougltoefficients. In economic term#e i-th processhas a
main product and eventually a series of by-products, the production of whichnitesceed
the quantity required as input. In single producfion by-products), it isaid thatthe process
belongs to industry, in joint production, it belongs to sectior

The existence of a main product in the sense defined above is a very stringent hypothesis, so
restrictive that it is almost uselesshiév dealing witithe question of choice of techniques,
economists, and specialists of input-output analysis in particular, have used the nséictoof
in a broader sense, which is however not well-specified. Hetaywtlee conceptual bases for a
theoretically relevant definition of the concept of sector. It is based on two ideas:

(i) What is important isiot thedistribution of signs in matrixg - A), but the fact that
(B - A) admits a semipositive inverse.

(i) In single production, thélivision into industries idased on a natural partition of the
processes according to tisemmodity produced. Theselection ofoperatedmethods
leads mosprobably tothe choice of one processewery industry. Inother words, all
processesvithin industryi compete with each o¢h, and thefinal technique is obtained
by picking exactly one method from each industry.

A similar structure is described in Definition 8, without the dominant product hypothesis.

Definition 8. Let there ben commodities andn processesm=n. The systemA, B) is a

sectoral economjf it is possible to partitiothe set of processéd into n sectordy, I, ..., I,

such that any viable techniqu&,( B,) consists of at least one process in every sector.

Consider aviable technique A4, B,) of the sectoraéconomy A, B). If this technique has

more tham processes, ibllows from a well-known mathematical res(deee.g. Gale, 1951,

19



p. 297) that there alwayists aviabletechnique Ag, Bg) which has exactly processes also
belonging to techniqueA(, B,). Suppose it wer@ossible to findanotherviable technique
(A, By) composed oh-1 processes alsbelonging to techniqueAg, By). In that case the
conditionset inDefinition 8 would be violated. In conclusiomany viabletechnique extracted
from (A, B) is either square anchinimal, and therefore all-productive, or contains ah

productive technique. Hence:

Theorem’. A viable sectoral economy has the super-adjustment property.

The generabefinition of asectoral economyoes notrequire theexistence of dominant
products. This makesthe difference: if eachprocess produces a single good or ilra
dominant product, the industry or sectomtioich the proces®elongs is transparergince it is
determined by the nature of tfr@ain) product. So tesay,the name ofthe sector ingraved
on the procesgself. Definition 8, onthe contrary, startfom a givenpartition of the set of
processes, and breaks the link betweese@orand aproduct. This point is stressed if the
commoditiesare marked byfigures 1, 2,..,n as usual, and the sectors by colouiptue’

‘white’, etc.... A sectoral economy can then be seen as a ‘rainbow economy’.

Example 2. Consider the system

27 27 27 2 22 28 24 O
A=|27 27 27 27, B={0 31 39 2
27 27 27 2 47 24 19 3

(the fact thatall processes havéhe same inputs plays no analyticadle and allows to
concentrate one’s attention on tatput nmatrix). If the ‘blue’ sector is reduced to process 1,

the ‘white’ sector to process 2nd the ‘red’sector to processesahd 4, it can be checked
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that a sectoral economy is defindgut it was not clear fromthe very beginning that this

partition is more meaningful than any other.

For theorists, the ain feature ofDefinition 8 lies inits remarkablesimplicity. It offers a
direct access to the properties of all-productiystems while avoiding matricial calculations.
But Definition 8 requires a change the habits of hought:instead of lookingexclusively at
the individual processes, it proceedsom the properties ofbunches’ of processes. The

approach is global, not local.

4.3. A general result
Theorem 7 showed thenplication: “sectoral economy! super-adjustment”. Thmverse

does not hold, however, as can be seen from a numerical example.

Example 3. Consider an economy withr 3 commaodities anth = 5 processes, characterized

by the following data:

199 0 0 5 6 0 13 6 0 O
A={0 20 0 0 24, B=|13 0 7 10 O
O 0 34 O 6 7 0 0 1

Given thatthe sets of processes {1,2,3}, {1,2,4}, and {3,4dl}define viablgechniques, it is
impossible topartition the set of processes {1,2,3,4,5} into 3 sectach that everyiable
technique contains at least one prodes® eachsector.Hence theeconomy isot asectoral

economy. Yet it possesses the super-adjustment property.
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The important characteristic for super-adjustmenbissomuchthe existence oh sectors,
but the fact thaany viabletechnique must consist of at leasprocessesThis isthe meaning

of the following theorem which generalizes Theorem 7:

TheorenB. The systemA, B) has the super-adjustment property if and only if:
(i) the system is viable;

(i) no techniqueA., By) of n-1 processes is viable.

5. THE ADJUSTMENT PROPERTY WITH PURE CAPITAL GOODS

The economic interpretation of the adjustment propassumes thaall commodities are
consumed. Two kinds of commodities are now distinguishegoods which may be used in
production and for which there is a positive final demand (‘consumption goods’, such as corn), and
k goods which are used for the production of other goods but for which there is a zero final demand
(‘pure capital goods’, such as fertilizers or fixed capital). The notion of pure capital goods is
common in Sraffian analysis. It is, however, not always adopted by I-O economists, who usually
treat the (intermediate) demand for investment goods as if it were a component of final demand.
The consumption goods are the fistommodities, the pure capital goods the kasines. To

reflect this distinction, we partitiolh andB as follows:

A= A B= B 21
{1 - o
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with the nxm matricesA’ andB’ referring to then consumption goods, and tkem matricesA”
andB" to thek pure capital goods. Since by definition there is no final demand for pure capital

goods, we restrict our attention to net output vectors of the following type:

d!
o[ e

where thenx1 net output vector of consumption gookls semipositive.
The previousdefinitions must beadapted to the new frameworRefinitions 1 and 2

become:

Definition 9. Consider a systenA(B) with pure capital goals, and letC = (B - A). The
system is said to beiable if it is capable of producing a positiveet output vector of
consumption goods while producing a zero net output of pure capital goods:

Oy=0, Cy>Q C'yv=0 (23)

Definition 10. A system withpure capitalgoodshasthe adjustment propertfor isadjustable
if it can produceany semipositivanet output vector o€fonsumptiorgoodswhile producing a

zero net output of pure capital goods. Formally:

d!
Dd:[o}zo, Oy=0, Cy=d, Cy¥ O (24)

The definition of minimality given in Definition 9 is unchanged. the presence of pure

capital goods, Theorem 6 no longer holds, as shown by a numerical example:
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Example 4. Let there be= 1 final goodk = 2 capital goods anah = 2 processes, and consider a

system such that:

+ 4+
C=B-A=|1 -1f.
-1 1

This system is viable (choose the same activity levels for the two processes), minimal (an isolated
process cannot produce a zero net product of capital goods), and has the adjustment property (any
final demand of type (+, 0, 0) can be met). Yet it is not square, because there are two processes but

three commodities.

However, someelationship betweethe number ofprocesses and that of commodities is
expected. The intuitioms: the numberm of processes represents thember of degrees of
freedom in choosing activity levels. Sinttee adjustment property contemplateslifferent
directions of demand fdinal goods, one mustavem=n. The m- n remainingdegrees of
freedom are used to adjust the pedbduct of purecapitalgoods to zero. Teequire them
being equal tothe numberk of pure capital goods would however b&o restrictive: as
illustrated by the ladtvo rows ofExample 4 the capitalgoodsmight be linked in such a way
that whenthe capital good X disappears fronthe net product, so does thapitalgood Y.
What matters is thaumber of independent capital goods, as measurédebsank ofmatrix
C".

This intuitive accounting is formalized in Definitick2, which is the generalization of the
notion of squareness in the new framework. Mxefinition 11introduces a condition in order

to eliminate ‘superfluous’ processes.

24



Definition 11. A process belonging to a viable systesuigerfluousf it cannot be used for the
production ofany semipositivénet productFormally, process is superfluous if théollowing

implication holds:

{y=z0, Cy=Qq Cy=0 O vy=0 (25)

Example 5.Starting fromExample 4, let uadd a third process, the mabduct ofwhich is 1
in thefirst capitalgoodand 2 in the seconchpitalgood. Sincethe net product oéll capital

goods cannot be zero if this process is operated, it is a superfluous process.

Definition 12. A system withpure capitalgoods isbalancedif the following two conditions
are satisfied:
- The number of processes is equal to the number of final goods plus the rank o€fatrix
m= n+ rk(C") (26)

- It admits no superfluous processes.

Theorem 9 is the generalization of Theorem 6 in presence of capital goods:

Theoren®. If a system with pure capital goods has any two of the following properties:
(i) itis minimal;
(i) itis balanced;

(i) itis adjustable;

it has the third one.
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6. VERTICAL INTEGRATION

The theory offixed capital haslealt with a genuine speciesmire capitalgoodsidentified as
‘machines’. Itproposes to proceed itwo steps: firsteliminate the machines by means of
vertical integration, then consider the integrated or reduced economfinalitnoodsonly. An

example gives a flavour of that approach.

Example 6. Let there be two final goods, iron and corn, and five processes. Process 1 describes
the production of irorfgood 1),processes 2 to 5 that of cdigood 2). Process 2 produces a
purecapitalgood,called ‘newtractor’ (good 3)jointly with corn. The newractorenters into

process 3 as an input, and reappears, ooututside, as a ‘one-year-otdactor’ (good 4).
Similarly, process 4 uses the one-year-whlittor as annput and produces corn and a ‘two-
year-old tractor’ (good 5). In the last process the tractor is worn out.

The corresponding matrices are written as:

(a7, &, &3 a;g aig by O 0 0 O]

Q1 8y Qapz dpq Aapg 0 by, byz by bys
A=l0 0 1 0 0] O 1 0 0 O0f.

O 0 O 1 o O 0 1 0 o0

0 0 0 0 1] 0 0 0O 1 o0

Over thelifetime of atractor, the net output of thieorn industry’, which consistshere of

processes 2 to 5, is reduced to conty. Instead of considering a several-year period, let us

look at theeconomy in a steady position fvactors,i.e. let us consider a situation which

the number of ‘births’ and ‘deaths’ ahachinesare equal. The ngiroduct isthen reduced to

iron and cornSincethere is ngoint production of thesénal goods,the adjustment property

is expected to hold.
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This Section generalizethe approach to moreomplex cases. Thepecificfeatures of
Example 6, which do not necessarily show up in the general case, are:
* Matrix C'" =B" - A" has maximal rank, equal to the number of pure capital goods
* In order toeliminatethe tractordrom the net product, suffices to applyhe same activity
levels to allprocesses in the corn industry. The important fact there is thatigeleraic
combination of columns whidnanslates thiglimination in mathematicaérms is gositive
combination. In more general models this will not always be the case.

* The integrated economy is a single-products economy.

In the general case, the successive steps of the procedure are:

i) If the capitalgoods are nahdependent, selectindependent rows fror€"” . Let us note

themC". C" is anrxm matrix such thatk(C")=r . We can disregard thé-() other rows

of matrixC", which correspond to the number of ‘dependent’ pure capital goods.
i) Next, let usidentify in C" a number of columns witmaximalrank r, and rearrange
matrix C" accordingly.More precisely, let us renumbehe processes in order to get the

following configuration:

_ [c] ¢
c=|* =2 27)
C; Cy

with C; annx(m-r) matrix, C; anrxr matrix, etc.,and rk(CTz”) =r (theremay bemore than

one way to choose matr;' ). Since matrixC5' is regular, matrixG

1—

G=+C) (28)
is well defined. When activity levelg apply tothe processes of type 1, tbapital goods

disappear fronthe net producif, simultaneously, activity levelg, = Gy, apply tothe capital
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goods oftype 2. MatrixG, which ‘eliminates’the purecapital goods, is calletthe integration
matrix.
iil) With the same activity levels, the net product of final goods amourtg, favith
[ =C;+C,G. (29)
To sumup, all happens as iffter elimination ofthe capital goods, there existedset ofm-r
processeslefined bythe columns of matri{, these processes representing the production of

final goods by means of final goods orilyis called thentegrated matrix

Theorem10. Consider a system withure capital goodswhich satisfies conditioii26). The
adjustment property holds if and only if the integrated métisregular and
rizo (30)
Gr1:=o0 (31)
G and I' being defined by(28) and (29). In particular, if the integratianatrix G is

semipositive, the system has the adjustment property if and only if the integrated nhaisia

semipositive inverse.

In the absence of capitafjoods " is nothing but B - A), so that Theorem 10 is a

generalization of the properties of all-productive systems as given by Theorem 4.

Example 7Let us return tdexample 6. MatribXC" hasmaximalrank ¢ = k = 3). Partition (27)

is obtained by separating the first two columns from the last three ones. Hence:

-a,; -a -a -a -a
C]’_:|:bll 11 12 :| Cé :|: 13 14 15 J
2

- bp—a bh3—ags bpg—ay, by aj
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01 -1 0 O

C;'=|0 O Cy=|1 -1 0
00 0O 1 -1
-1 0 0 0
1 -1 — — ralll _l_n_
(Cs) "=[-1 -1 0| G=+C) C'=|0
-1 -1 -1 0
F=C/+C.G= br1—agg —(aro+ aggt aggt agy
e —8y1  (Dpa+ gt bpgt by —(ayst ard axt aj

As pointed out[" is the matrix describing the reduced economy with two processes:
a1 iron [0 ax corn — bygiron
(arztaustasstags) iron [ (agrtagstagstags) corn - (Daotbasthytbys) corn
where the second process represents the integrated nohrstry without net product of
tractors.
In the present casmatrix G is semipositive an@ ™ has a semipositive invergeiability
being assumed)Theorem 10 applies anthe economy described in Example 6 has the
adjustment property. The method followed in this Section and Theorem 9 provide a mechanical

device to check whether the adjustment property holds or not.

7. A PROGRAMME FOR FURTHER RESEARCH

The economic properties of single-prodggstems had been explored by Srdffiaself, so
that the scope for further researctthirs field was quite restricted. On the contra8raffa’s
bookleft unsolved a number of puzzles concerritmgbehaviour of joinfproductionsystems:

it recognized that some economic laws establisbedingle production do ndtold in joint
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production, but no precise account of thdseergences was given. Theye probably more
significantthaninitially expected: in several circumstances, Sraffa underestirttegeghp and
unduly proceeded by analogy. The study of multiple-prodsydtems has been a central
analytical objective othe Sraffian economists, witthe permanentea of a comparison with
single production. (The&lea itself isnot soobvious: let us recall thahe distinction between
single-and multiple-product systems mot even mentioned immany books on general
equilibrium, such aPebreu’'sTheory of Valug An importantpart of this research is the
identification of the types ofjoint production systems which behave liksingle-product
systems. Sections 3 to 6 constitute an overview of the results obtained in this field.

This field ofresearchwhich hasmainly been explored bthe Sraffians, is clearly ointerest
for 1-O spealists. Theaims ofthesetwo categories of economists aléferent, however, so
that the transfer of th8raffianresults to the I-Gramework isnot immediate.For instance,
when the Sraffians identifysingle-production-like properties, it is never with tliea of

substituting asimplified representatior{(A, 1) for the complete representatiok, ). Such a

replacement is frequently madeli@® analysisput wehave shown that thimay sometimes be
misleading €f. subsection3.4). 1-O economists know that their procedure dely an
approximation, and generally welcomenstructive dialogue with theoretical economists on
when the approximation is or is not justified.

Consider theexample of negative coefficients. Frequent® economistsfind that the
input-outputmatrix A which theyconstruct as a proxy for the observedltiple-production
system happens to have negative coefficieatg. Rainer,1989). Many of themare very
reluctant to accephis ‘fact’; often they decide that this must thee to measuremeetrors
and thelike, and begin tdamper with thedata. Pure theoristsondemn this practice. In our

opinion, it would be preferable to organize a research programme on such questions as: under
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which circumstances and for which problems does a joint production systamiitte input-
output matrix admitted negative coefficien®ich are the best rules wontruct that pseudo-
input-output matrix?, etc. As a very first answer, let teport thefollowing result: the
conclusions conerning all-engaging and all-productive sys(&estion 3)still hold when the
input-output matrix has negative coefficients.

To sum up, the identification of the cases when multiple-product systems behausglie
products ones, which is the resultSyaffian analyses, isnportant. But it isonly a firststep in
a more general research programmewibich cooperation between theoretical asoplied

economists is required.

APPENDIX: A NOTE ON THE SOURCES OF THE THEOREMS

Theorem 1 follows from Theorem 6 aigkfinition 5. Theorems 2, 3 andate fromBidard
(1996a). Theorem 5 can be found in Bidat891, ch. XI).Theorems 6, 9 and 10 hakeen
proved in Bidard and Erreygers (1998). Theorems 7 and 8 are diowethe resultgiven in

Erreygers (1996).
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Endnotes

' The @, B) notation is standard in both tSeaffa andhe vonNeumann literature; in input-
outputeconomics the convention is to represent the inputsusgamatrixU, and theoutputs
by amake-matrixv".

Z With regard to vectors and matrices the expressid@i indicates semipositivity, and ‘®'
positivity.

® Condition (5) also definegas the natural generalization of a positive Standanamodity as
defined by Sraffa (1960), up to a factor of normalization. Such a Standard comdumtityiot
always exist in joinpproduction (Sraffa, 1960, 853), bgtall-engaging systemare special
cases of joint production.

* This can always be accomplished as followsni ‘old’ unit ofgoodj costsp; $, thendefine

one ‘new’ unit as equal to@d/old’ units.
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