22ndInforum World Conference 30 August – 6 September 2013 Alexandria, Virginia, USA

NEW STRUCTURE OF TURINA (TURKEY'S INTERINDUSTRY ANALYSIS MODEL) Gazi Ozhan Ankara University Ankara, Turkey hgozhan@gmail.com

Two workshops on Turina held at ITI Tokyo

2nd Workshop: 25 Jan – 6 Feb, 2014 1st Workshop: 25 Aug – 5 Sep, 2013

Participants: Gazi Ozhan, Yasuhiko Sasai, Mitsuhito Ono, Takashi Imagava

This paper is a summary of two workshops held at ITI in Tokyo.

ITI: Institute for International Trade and Investment

Left to Right: Ono, Imagava, Gazi, Sasai

Contents

- 1. Introduction
- 2. Basic programs
- 3. Interindustry model (IO Structure)
- 4. Introducing data into TURINA
- 5. Import and export price vectors
- 6. Regression Equations
- 7. Conclusions: What's next

1. Introduction

- TURINA- <u>Turkey</u>'s <u>Interindustry Analysis</u> Model is an INTERDYME –type model.
- INTERDYME models require at least one IO table and a set of time series data for basic macroeconomic variables.

2. Basic Computer Programs

- The following programs are installed into D drive:
 - i. PDG (G7)
 - ii. BC45
 - iii. UTIL
 - iv. CMD
 - v. TURINA

Structure of TURINA folder

Subfolders in TURINA folder

• RAWDATA: It contains mainly excel files for original data obtained from various sources.

Main data sources:

- i. WIOD
- ii. TURKSTAT
- iii. MINISTRY OF DEVELOPMENT

Subfolders in TURINA (Cont)

- RAW DATA: Excel files containing original data
- DATA: Raw data are transferred from Excel into text files and stored into this folder.
- Folders for regression equations: FCEHH, GFCF, DEP, PRO, EXP ...
- DOCS: Folder for documents and reports about methods, sources, programs, results...

3. Input-Output System (Table)

Matrix equations describing IO system are needed to build an Interdyme model.

Below is the structure of an IO table (system):

Time Series of IO Tables

Matrices and vectors

- FM: Flow matrix (n by n)
- FD: Final demand matrix (n by k)
- VA: Value added matrix (j by n)
- q: Output vector (1 by n or n by 1)
- n: Number of sectors, n = 35 in TURINA
- j: Number of final demand columns
- k: Number of value added rows

Output equations

• q = Aq + f (Eq. 1)

where A is input-output coefficient matrix. It is obtained by dividing all column elements of FM to total sector output for each column.

q = Total output vector.

f = Final demand vector, row sums of FD matrix.

Finding output by matrix inversion

• Solution to (Eq 1) $q = (I-A)^{-1}f$

- (Eq. 2)
- Given a non-negative final demand vector f and a non-negative A matrix, output vector q will be non-negative.
- (I-A)⁻¹ is called the Leontief inverse. All elements of the Leontief inverse are nearly non-zero (positive).

Numerical Example

IO table for a three-sector economy (hypothetical)

	Agr	Ind	Ser	Sum	f	q
Agr	10	20	30	60	140	200
Ind	40	50	60	150	150	300
Ser	70	80	90	240	260	500
Sum	120	150	180	450	550	1000
V	80	150	320	550		
q	200	300	500	1000		

FD (Final demand matrix)

• Row sums of FD gives f (total final demand)

					FD =
f	im	ex	inv	gov	con
140	-15	80	0	5	70
150	-120	100	50	20	120
260	-10	50	5	35	180
550	-145	230	55	60	370

Value added matrix VA

• Column sums of VA gives v (Total value added)

VA				
Dep	4	10	30	44
Lab	55	85	180	320
Cap	23	40	80	143
Tax	-2	15	30	43
V	80	150	320	550

A Matrix

Input-output coefficient matrix A and Identity matrix I

А				Ι		
	Agr	Ind	Ser			
Agr	0.050	0.067	0.060	1	0	0
Ind	0.200	0.167	0.120	0	1	0
Ser	0.350	0.267	0.180	0	0	1
Sum	0.600	0.500	0.360			
V	0.400	0.500	0.640			
q	1.000	1.000	1.000			

Leontief Inverse

• Linverse = $(I - A)^{-1}$

1.1150.1210.0990.3531.2970.2160.5900.4731.332

Finding output vector

• $q = (I-A)^{-1}f$

$(I - A)^{-1}$			f	q
1.115	0.121	0.099	140	200
0.353	1.297	0.216	150	300
0.590	0.473	1.332	260	500

Finding output vector without matrix inversion

- In actual input-output computations, the Leontief inverse is seldom used... (Almon, The Craft..., Vol. 3, p. 32).
- Instead, the iterative method or the Seidel method is used.
- In Interdyme models the Seidel method is employed.

The iterative method demonstrated

```
q^{n+1} = Aq^{n} + f
Let q^{0} = f,
then
q^{1} = Af + f
q^{2} = Aq^{1} + f
q^{3} = Aq^{2} + f
```

Finding output vector (Iterative method)

- Iteration continues until the difference
 qⁿ⁺¹ qⁿ approaches 0 (zero)
- With some predetermined level of error or number of iterations the method converges, i.e., the solution to output vector is possible.
- Next slide shows the method using our threesector model.

Convergence of output vector

After eight iterations output vector converges

								f
q4	Aq3	q3	Aq2	q2	Aq1	q 1	Aq0	q0
198	58	195	55	188	48	173	33	140
294	144	287	137	271	121	234	84	150
491	231	480	220	454	194	396	136	260
q8	Aq7	q7	Aqб	qб	Aq5	q5	Aq4	
200	60	200	60	200	60	199	59	
300	150	300	150	299	149	298	148	
500	240	499	239	498	238	496	236	

Price model

- Price model in IO analysis is presented by the following equation
- p = pA + v (Eq. 3)
- Where p is the price vector in row form. For the initial (base) year all elements of p are 1.00.
- A: input-output coefficient matrix
- v: Coefficient vector for value added (row)

Numerical example

- Solution to the price model is given by
- $p = v(I A)^{-1}$ (Eq. 4)
- It can be shown that the initial price level is 1.

0.400	0.500	0.640	1.115	0.121	0.099
			0.353	1.297	0.216
			0.590	0.473	1.332

1.000 1.000 1.000

4. Introducing Data: Flow matrix

• Importing Flow Matrix from Excel

matin FM 2000 1 35 1 35					
#	Agriculture	Mining	Food, Bev Tob	Textiles	
Agriculture	8,138	34	20,935	1,694	
Mining	41	244	110	70	
Food, Bever Tob	1,730	29	7,568	287	
Textiles	211	70	401	26,149	
					 •

Importing VA matrix

• Importing VA rows for one year from Excel

vmatdat r	611350			
2009 totin	t dep wag			
29276	6449	55606	65328	
361	364	1940	4672	
40089	3207	3468	6967	
4093	4023	6208	7178	
5112	1379	4557	4564	
49655	8973	16173	23380	 ;

Importing FD matrix

• Importing FD columns for one year from Excel

vmatdat c 8 1 1 35 0								
2002 fceł	nh fcenp	fcegov	gfcf civv	y exp imp	o out			
16015	0	94	15	-408	2364	-1748	37125	
940	0	43	9	288	1.23	-5699	3588	
21126	0	329	44	1034	2257	-1440	31697	
9890	0	213	277	704	14445	-2863	39173	
1011	0	27	7	154	323	-308	2309	
••••	••••	••••	••••	••••	••••	••••	••••	•

5. Export and Import Prices

- Problem: Export and Import price vectors are not available in ESA (WIOD). However IO tables containing Export and Import data are available at current and constant prices (pyp = previous year prices) in dollars, but not in TL. Four steps are taken:
- Step 1: Obtain the dollar price index numbers for exports and imports.

Export & Import Prices (Cont)

- The price vectors of Exp and Imp in dollars for all 35 sectors and 15 years were constructed. Call these price vectors "pex\$" and "pim\$", respectively.
- Step 2: Find the exchange rate series for TL/\$, and form an index for this, starting from 1995
 = 1.000. Call this index series as "indTL\$".

Export & Import Prices (Cont)

- Step 3: Multiply the export price vectors (pex\$) by the TL/\$ exchange rate index throughout for 15 years. The resulting series are export price vectors in terms of TL, which is denoted by "pex".
- Step 4: Data validation. It was checked that the "pex" vector is identical with the "output price vector" in TL terms in WIOD sources.

Data for Export Price

#Insert pex.txt file into Turina

vmatdat c 1 15 1 35 15

рех		1995	1996	1997	1998	 2009
1	Agriculture, Hunting, Fore	1.0000	1.1170	1.0293	1.2075	 1.6195
2	Mining and Quarrying	1.0000	0.9656	0.9211	0.8323	 2.5761
3	Food, Beverages and Tol	1.0000	1.0124	1.0853	0.9765	 1.2333
4	Textiles and Textile Produ	1.0000	0.9106	0.8302	0.7559	 0.6542
33	Health and Social Work	1.0000	1.0327	1.0403	1.0474	 2.2418
34	Other Community, Social	1.0000	1.0327	1.0403	1.0474	 1.7459
35	Private Households with I	1.0000	1.0327	1.0403	1.0474	 1.8198;

6. Regression Equations in TURINA

• There are two data banks:

Macro data bank: Data bank for macroeconomic variables.

- VAM bank: Bank for matrices and vectors
- Regression folders: They use data from both banks.
- Five regression folders in Turina for: FCEHH, GFCF, DEP, PRO, EXP.

How to run regression equations

- After estimating regression equations in G7, do the following:
- CMD: Double-click on the command prompt on the desktop: C:_
- C:\windows\Systems32>D: (Type 'D:' and Ent)
- D:\cd TURINA (Type 'cd Turina' and Enter)
- D:\TURINA>st (Type 'st' and Enter, to start)

Three lines of PATH statements appear.

How to run regression eqns (cont)

• Open G7 from the desktop, and press OK.

To run regression equations for the final consumption expenditure of households (FCEHH subfolder) in TURINA main folder do the following.

In the command box of the G7 window type

- vam turina a <enter>
- dvam a <enter>

Running Regressions (Cont)

- <add fcehh\fcehhreg.ini> <enter>
- We can see the results of regression equations for per capita final consumption expenditures of households for 35 sectors.
- Both estimated coefficients and graphs will be printed for each sector.

Bad Regression Example

1 AGRICULTURE, HUNTING, FORESTRY AND FISHING

Good Regression Example

2 MINING AND QUARRYING

7. What's Next

- Improve the databank with new variables, employment, capital stock, and else...
- Revise regression equations which do not comply with the economic theory.
- Run the model for the next 10 or 15 years.
- This concludes today's presentation.

Thanks for your attention!