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Abstract:
In this paper I present two possible industry-level indices of embodied R&D that were meant to

capture the extent of research and development done on the capital goods in which an industry invests. 
Compiling and adjusting data from various National Science Foundation and Commerce Department
sources, I construct industry-level, time-series measure of these indices and investigate their properties. 
According to one index (which is highly correlated with the other), the overall growth in embodied
R&D over the last three decades is nearly entirely due to increased R&D done on capital goods rather
than changes in which capital goods are used.  

The measures of embodied R&D were compared to rates of embodied technological change
that were estimated using plant-level manufacturing data from the Census Bureau’s Longitudinal
Research Database.  The level of embodied R&D is found to be positively and significantly related to
the estimated rates of embodied technological change, but its growth rate is not.  Likewise, the level
rather than the growth rate of embodied R&D is shown to have a positive and significant effect on
productivity growth as measured by the Solow Residual.  This suggests that the constructed measure of
embodied R&D is likely to be proportional to true embodied technological change.
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1.  Introduction

To properly model long-run productivity growth, at least within the framework of Neoclassical
production theory, one must accurately measure capital accumulation.  To this end, one must
understand the extent to which new capital is more productive (i.e. more technologically advanced) than
old capital.  This is the issue of capital-embodiment.  Distinguishing between embodied and
disembodied technological change has been a long sought after goal in economics, as has the dual
problem of distinguishing between obsolescence and physical depreciation on the price/cost-side.  The
field of hedonic price measurement has provided a potential solution to this fundamental identification
problem (see Hall 1968).  However, hedonic methods require very specific time-series and cross-
sectional data on prices and product characteristics -- data which is not available for most capital
goods.

Sakellaris and Wilson (2000) developed an alternative, production-side approach to measuring
embodied technological change that exploits time-series and cross-sectional variation in investment
histories.  We estimate this model using plant-level manufacturing data from the Longitudinal Research
Database (LRD) available at the U.S. Census Bureau.  I extend this method to allow the estimates of
embodied technological change to vary by industry.  Nonetheless, there remains two inherent limitations
to these estimates:  (1) they can only be obtained for manufacturing industries, and (2) there are no
comparable results in the literature with which to evaluate the sensibility of these estimates.  That is, how
does one know whether it is sensible for one industry to have a higher rate of embodied technological
change than another.  An inspection of capital flows tables may be able to tell us which industries invest
in goods that are considered “high-tech,” but other than subjective priors, we have no way of
quantifying how high-tech an industry’s capital goods are.

In order to evaluate the estimated rates of embodied technological change in manufacturing
industries and to extend these results to non-manufacturing industries, I propose two alternative indices
that are meant to capture the amount of research and development (R&D) embodied in an industry’s
capital.  Each index is a weighted average of past and present R&D performed on the (upstream)
capital goods purchased by a (downstream) industry.  To construct these indices, I create a data set
containing R&D by product field from 1957 to 1997, using various releases of the National Science
Foundation’s Research and Development in Industry.  This data is then combined with Commerce
Department data on industry investment by asset type.  The product field R&D data allows me to
avoid measurement problems associated with using R&D by performing industry.

After discussing many of the interesting features of the constructed indices, I search for some
reduced-form relationships between embodied R&D and either the estimated rates of embodied
technological change that I found at the plant-level or conventionally-measured total factor productivity
(TFP).  It turns out that the level, but not the growth rate, of embodied R&D is positively and



2

1There is a large literature seeking to measure the effects of R&D on productivity.  However,
the R&D variable that is generally used is R&D done by the firm, industry, or economy for which
productivity is being measured.  There is also a growing literature on the productivity effects of R&D
spillovers -- that is, R&D done by other firms that are “close” to the firm/industry in question in terms of
distance, industry, product field, input-output linkages, etc..  These types of R&D are likely to affect
disembodied technological change and thus are not relevant for this paper.  

significantly related to both TFP and the estimates of embodied technological change.1

2. Estimating Embodied Technological Change at the Plant-Level

In this section, I will briefly discuss the main empirical model used to estimate industry-specific
rates of embodied technological change.  The methodology, data, and motivation for the empirical
model are discussed in detail in Sakellaris and Wilson (2000).  The empirical model which we
estimated using establishment-level manufacturing data housed at the Center for Economic Studies,
U.S. Census Bureau, can essentially be summarized in four equations:

Capital Services

       (1)J J U E JJ J* min{ ,( ) }= ⋅
1
τ

where:
J = equipment capital stock in efficiency units
UJ = equipment capital utilization rate 
E = Energy usage
JJ = parameter representing the elasticity of energy with respect to equipment capital utilization.
An exactly analogous equation is specified for the structures capital services.

Equipment Capital Stock
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where:
It-s = Real investment in vintage t-s equipment (deflated using a non-hedonic deflator)
Dt,t-s = the fraction of one dollar’s worth of vintage t-s investment that is still used in  production

in year t
( = parameter representing the rate of embodied technological change
t = current year (so t-s denotes vintage)
t0 = numeraire year in which level of embodied technology is 1.
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where:
Q = real gross output (i.e. plant shipments adjusted for inventory change)
L = labor hours
M = real materials
I denotes plant.

The services of structures capital, S*, is defined analogously to (1) and (2) except that ( is
assumed to be zero in the construction of the structures stock.  The “Other Variables” in equation (3)
attempt to account for other factors that make plants with the same inputs more or less productive. 
They include year dummies, industry dummies, and a dummy variable indicating whether or not the
plant is owned by a multi-plant firm.  They also include dummy variables indicating whether or not the
plant had a large investment episode (spike) in the previous year, two years ago, etc..., up to seven
years ago.  These latter variables are meant to capture the costs in terms of lost production due to the
learning-by-doing accompanying a plant’s use of large amounts of new equipment.

Substituting equations (1) and (2) into (3), assuming that JS = JJ, and adding an error term
yields a single regression equation that can be used to estimate ", $, (, 0, 2, J, and the coefficients on
the control variables using nonlinear least squares.  A simple extension can be done to allow ( to vary
by sector/industry (while constraining the other coefficients to be the same across all plants in the
sample).

The estimates of ( by sector are shown in Table 1.  The estimates seems sensible for the most
part with the exception of some slightly negative estimates and unrealistically high values in Computers
(16) and Electronic Components (19).  The negative values are not too disturbing given their rather high
standard errors.  They also occur in sectors where one might expect low levels of embodied
technology.  It seems reasonable to interpret these negatives as findings of (=0 for these sectors and
thus I replace the negative (’s with zero for constructing quality-adjusted capital stocks.  The absurdly
high (’s in 16 and 19 are most likely a result of the use of the BEA’s 4-digit level shipments deflators. 
These deflators come from the BLS with two key exceptions: computers and semiconductors (which
just so happen to be in sector 19).  I have also tried estimating the model using the PCE deflator (which
has some theoretical justification as discussed in Sakellaris and Wilson 2000).  Yet, this results in
strongly negative (’s for these two industries which is clearly unrealistic.  Therefore, throughout the
paper I use the (’s in Table 1, with the caveat that the relative rank of ( may be more informative than
the actual levels.

3. The Relationship between estimates of (( and Investment Asset Shares
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2These shares sum to 1, therefore a constant cannot be included in this regression in order to
maintain full rank in the regressor matrix.

In order to impute nonmfg (’s as well as to evaluate the sensibility of their rank across
industries, it would be nice if there were observable variables that vary by industry and which are likely
to be proportional to the true rate of ETC.  Since ( can be thought of as a weighted average of the
rates of ETC for each particular capital asset, the asset mix of an industry (from the BEA’s Fixed
Reproducible Tangible Wealth, FRTW) is one possibility.  However, given only 24 sectors, these asset
shares had to be combined into a small number (n<24 is required for identification if ( is regressed on
asset shares).  Ideally, we would like to aggregate them into a small number of groups that differ
according to the levels of technology.  Thus, the disadvantage of using asset shares is that the process
of aggregation requires some arbitrary decisions on what assets are considered “high-tech” vs. “low-
tech.”

The NIPA uses an equipment asset breakdown consisting of 4 categories: 1) “Information
processing and related equipment,” 2) “Industrial equipment,” 3) “Transportation and related
equipment,” and 4) “Other equipment” (see Table 5.8 - NIPA).  Using this classification scheme, I
aggregate the FRTW’s data on industries’ investment in each of 35 equipment assets to investment by
NIPA category.  For each industry, the share of total investment in each of the four asset categories is
calculated and averaged from 1972-96.

Our estimates of ( were then regressed on the four 1972-96 average asset shares.2  The results
of this regression are shown in Table 2.  The first column contains the R2 and coefficient estimates from
performing OLS regression.  The second contains the results from a quadratic programming algorithm
which minimizes the sum of squared error subject to the constraint that the coefficients on the asset
shares are greater than zero.  This was done in order to ensure that imputed (’s for nonmfg would be
positive (negative (’s are unrealistic).  The estimated coefficients in the unrestricted case are very
imprecise and 3 of the 4 are negative.  The only sensible results of this regression is that the coefficient
on “Information processing” is, as one would expect, positive (though the standard error is quite large). 
The linear programming coefficients seem more realistic, however they are extremely imprecise.  Thus,
it appears that a relationship between asset shares and ( cannot be estimated with a sufficiently high
degree of precision to be useful for imputing rates of ETC in nonmfg.

4.  Embodied R&D as a Proxy for Embodied Technology

Another natural choice for a variable that is likely to be related to ( would be the amount of
research and development (R&D) that went into developing the technology that is embodied in an
industry’s capital.  As Hulten (1996) puts it: "Most advances in knowledge are the result of systematic
investments in research and development.”  So if R&D is how technology is produced, then R&D
directed towards the equipment assets used by an industry is the main input into the “production” of its
capital-embodied technology.  To capture this notion of “capital-embodied R&D,” I create two
alternative indices which are weighted averages of past and present R&D done on an industry’s
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3As discussed in Sakellaris & Wilson (2000), the proper unit of measurement for It-s is nominal
investment deflated by the deflator for personal consumption expenditures (PCE).

4There may also be pure rent spillovers from embodied R&D, in addition to those due to
mismeasurement.  These spillovers are still contributors to investment-specific technological change
since an industry can only reap the benefits of them if they invest.

equipment capital.  As opposed to the asset shares discussed in Section 3, embodied R&D has the
advantage of being a single metric which reflects both the changing asset mix of an industry’s capital
and the technological advances (to the extent they are due to R&D) that have taken place in each asset
type.  The hope is that these indices will be useful predictors of either the level or the change in
embodied technology.  We can define the level of embodied technology for investment of vintage t-s in
terms of equation (2) as:

       (4)q t s
t s t

−
− −= +( )1 0γ

Note that from equation (2) it is clear that q refers to the level of embodied technology per unit of
investment.3

The indices I construct in this paper are related yet very different from the usual measures of
embodied or “indirect” R&D in capital that are used in the literature on R&D spillovers.  The literature
on indirect/embodied R&D is concerned with measuring the extent to which upstream R&D affects the
productivity of downstream industries.  As pointed out by Scherer (1982) and Griliches (1979), much
of measured downstream benefits may be due to measurement error in the price of capital goods.  If
prices adjusted fully for quality change, real output for capital producers and real investment for
downstream industries would be augmented to reflect the increased quality embodied in the capital
being produced.  One would then expect to observe productivity gains (if there were any) in the
capital-supplying industry and not in the downstream industries.  On the other hand, if prices do not
adjust for quality and, due to competition in the upstream industry, the nominal price of capital does not
increase in proportion to the increase in quality, then real output of the supplying industry and real
investment of purchasing industries will be understated.  In this case, increases in measured productivity
should show up mainly in the downstream industries.  It is this kind of R&D spillover, due to quality-
mismeasurement in equipment price deflators, that I am attempting to capture.4

For the purposes of comparison and to avoid confusion with more traditional measures of
embodied R&D, it will be helpful to see the measure of indirect R&D in capital generally used in the
R&D spillover literature:

       (5)IRD t B t RD t Yi ji j j
j

( ) ( )[ ( ) / ]= ∑
where Bji is industry j's sales of capital to industry i, RDj is the R&D stock for industry j, and Yj is
industry j’s output.  The R&D stock is generally measured using a perpetual inventory accumulation of
past and present R&D expenditures assuming some rate of depreciation.  RD/Y is referred to as “R&D
intensity.”  Thus, investment in each upstream industry is multiplied by the R&D intensity of that industry
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5See, e.g., Goto & Suzuki (1989), Sveikauskas (2000), Scherer (1982, 1984), and Sakurai, et
al. (1997).

and then summed across industries.  This measure was developed by Terleckyj (1974) and has been
used in numerous studies.5

A problem with the Terleckyj approach is that R&D spending (and therefore R&D stock) by
an industry is not necessarily equal to the total R&D done on that industry’s products. The use of
own-R&D is inappropriate if there are non-zero off-diagonal elements in the interindustry R&D flows
matrix -- i.e., if industries perform R&D on products other than their own.  There are two reasons to
expect this to be a problem.  As Griliches and Lichtenberg (1984) put it:  

(1) Many of the major R&D performers are conglomerates or reasonably widely diversified firms. 
Thus, the R&D reported by them is not necessarily “done” in the industry they are attributed to. 
(2) Many firms perform R&D directed at processes and products used in other industries.  There is
a significant difference between the industrial locus of a particular R&D activity, its “origin,” and
the ultimate place of use of the results of such activity, the locus of its productivity effects. (p.466)

Evidence of this can be seen in the NSF’s annual tables on applied R&D by industry and by product
field which show numerous large off-diagonal elements in any given year.  Thus, a key innovation of this
paper is the use of product-field R&D rather than industry own-R&D when measuring embodied R&D. 

Surprisingly, though the data is readily available, the NSF data on R&D by product field has
rarely been used in economic studies.  When it has been used, for example in Griliches & Lichtenberg’s
study, the productivity effects of product field R&D are sought within the industry which produces that
product rather than in downstream industries.

For the purposes of predicting either q or (, the Terleckyj measure is inappropriate because it
uses investment flows (Bji) rather than investment shares (i.e. Bji divided by total investment of industry
I).  That is, q is the level of embodied technology per unit of investment and therefore should be
independent of the scale of an industry’s investment (as should its growth rate).  Thus, in the indices
described below, I use investment shares rather than investment flows.

The first index I construct is based on the premise that an industry’s q in a given year is simply a
weighted average of the level’s of embodied technology in each of the capital goods the industry
purchases.  So, let us define the first index, denoted M1, as:

       (6)Φ i pi p
p

t x t q t1

1

13

( ) ( ) ( )= ⋅
=

∑
where xpi is the share of industry I's equipment investment spent on capital good p, and qp is the level of
technology embodied in capital of asset category (or product field) p.  We can proxy for qp with a
perpetual inventory accumulation of past and present R&D done on that product field (assuming some
depreciation rate), normalized to be 1 in the base year of the prices used to deflate nominal investment:

       (7)q t d q t r t q tp p p p Base( ) [( ) ( ) ( )] / ( )= − − +1 1
where d is the assumed rate of depreciation and rp is the R&D spending on product field p, deflated by
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6Hard copies of the tables, one for each year of the survey, containing total R&D by product
field, were generously compiled and provided by Raymond Wolfe of the NSF.

the PCE deflator.  Given that the real marginal product must be equal across all types of equipment (a
necessary condition for the existence of an equipment capital stock) and the fact that real units are
identical to nominal units in the base year, qp must be equal across p in the base year.

It is possible that the productivity of a new capital depends on the composition of capital in
place in a firm or industry.  Under this hypothesis, past changes in asset mix should affect an industry’s
current level of embodied technology.  An index which allows for this possibility is defined by the
following equations:

, where        (8)Φ Φi i it d t r t2 21 1( ) ( ) ( ) ( )= − − +

r t x t r ti pi p
p

( ) ( ) ( )= ⋅
=

∑
1

13

Here a weighted average of current R&D spending on capital goods is fed into a perpetual inventory
accumulation.  So past R&D as well as past changes in the composition of an industry’s capital
determine the current level of M2.

An interesting issue is whether Mi
2 should be a predictor of qi, the level of embodied

technology, or for (i, the growth rate of embodied technology.  Perhaps the composition of capital in
place affects not how productive the current vintage of investment is (relative to the base year), but
rather how much more productive the current vintage is than last year’s vintage.  This is left as an open
question; in sections 6 and 7, both the level and the growth of Mi

2 will be compared to TFP and the
estimated rates of (i.

5.  Data

The one and only source for industrial R&D in the U.S. is the survey of companies done by the
Census Bureau and financed by the NSF.  This survey has been done on an irregular basis between
1957 and 1997 (it was not done in 65, 66, 69, 78, 80, 82, 84, 86, 88, 90, 92, 94, and 96).  Among
other things, the NSF asks respondents how much R&D they spent in each “product field.”  This data
is published in the NSF’s Funds for Research and Development in Industry.6  Unfortunately, there
are many holes in the data due to non-disclosure of certain values and changes in the product field
classification over time.  These holes were filled in by imputation using available information in adjacent
years.  Data for years in which the survey was not done were interpolated.  

Another discontinuity in the data comes from the fact that after 1983, R&D by product field
was no longer imputed for non-respondents of the survey.  Fortunately, the NSF does supply the
coverage ratios so that total R&D by product field can be approximated under the assumption that non-
respondents have a similar product field decomposition of their total R&D as have respondents.  After
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7Unfortunately, product- and process-oriented R&D is not distinguished in the product field
R&D data.  Ideally, I would use only the product-oriented R&D in each product field.  This will not
alter our indices if either the split between product- and process-oriented R&D is constant over time
and product field, or the fraction of R&D that is process-oriented is very small.  There is some
evidence of the latter: Scherer (1984) finds three-fourths of all R&D is product-oriented.

8Investment in non-equipment asset types was dropped from the matrix.  Of the 37 NSF
product fields, only the 13 which referred to equipment assets were kept.  Thus, the embodied R&D
indices I construct exclude R&D embodied in structures.  This is appropriate since ( refers only to
embodied technological change in equipment .

these adjustments were made to the raw data, what was left was a matrix of applied R&D by product
field for 1957-97.7  This gives the rp(t)’s in equations (7) and (8) above.

The other data ingredient necessary for creating the desired embodied R&D indices is a capital
flows matrix by year.  I use the BEA’s unpublished table of nominal investment by asset type for 62
industries for 1957-97 provided in the Fixed Reproducible Tangible Wealth in the United States,
1925-1997.8  First, a many-to-one mapping was made between the BEA’s asset types and the NSF’s
equipment product fields.  This mapping is shown in Table 3.  The mapping was used to convert the
capital flows matrix to one that is by product field rather than asset type.  This flows matrix was then
converted into a coefficients (shares) matrix using the industry investment totals (across the equipment
product fields).  The elements of this matrix correspond to the xpi’s in equations (7) and (8) above.

The xpi’s and rp’s are used, according to equations (7) and (8), to construct each of the two
indices.  The depreciation rate, d, is assumed to equal 15%, which is commonly used in the R&D
literature when direct R&D stocks are constructed.  There is also evidence that, at least for R&D
directed towards an industry’s product (rather than its capital), a depreciation rate closer to zero may
be more appropriate (see Griliches and Lichtenberg (1984)).  Therefore, as an alternative, I also
construct indices using a 2% depreciation rate.  The choice turns out to have very little effect on the
growth of an index or its correlation with TFP or estimated (.  For both of these stocks, a unit bucket
adjustment is made to “fill in” the stock for early periods (see Almon 1994, p. 87).

Table 4 shows the annual growth rate of M1 (assuming a 15% depreciation rate) for each
industry from 1972-96, ranked in descending order.  1972-96 is the relevant period for comparing
embodied R&D to ( since ( refers to the rate of embodied technological change between 1972-96. 
The annual growth for the overall economy, shown at the bottom of the table, has been about 2%. 
Notice that services, particularly financial services, tend to have the fastest growth in embodied R&D
while manufacturing industries exhibit far slower growth.  This could be because services have been
changing their capital asset mix, relative to manufacturing, towards higher-tech equipment (e.g.
computers), or because the equipment goods service industries traditionally invest in have undergone
rapid increases in R&D (causing high growth in qp), or both.  More generally, we would like to know
for the overall economy, as well as for individual industries, whether the growth in embodied R&D over
the past few decades is driven more by changes in capital composition or growth in R&D spending.

The following equation provides just such a decomposition:
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9Consider a simple Cobb-Douglas production function where there are two types of capital
goods 1 and 2: Yt = Kt

"Lt
$ where Kt = Kt-1(1-*) + it1qt

1 + it2qt
2.  In the base year, the marginal

product of a current dollar’s worth of investment is identical to the marginal product of a constant-
quality unit of investment as quality is defined relative to the base year’s level.  The marginal product of
a current dollar’s worth of investment in good j (ij) is "Yqj/K.  Equalizing across goods yields q1 = q2. 
In non-base years, the equality between nominal and real marginal products breaks down and thus q1

need not equal q2.

       (9) 
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The first term in the decomposition captures the contribution to total change from changes in R&D
embodied in capital goods holding constant the composition of capital.  The second term gives the
contribution from changes in asset mix holding constant R&D embodied in specific goods.  The third is
an interaction term, giving the contribution from the covariance of changes in R&D embodied in goods
with changes in asset mix.  Dividing both sides of (9) by M1(T0) yields a growth rate decomposition.

Figure 1 graphs this decomposition for the 1972 to 1997 growth rates across industries.  The
industries are ordered from left to right according to their total growth rate.  The figure also gives the
unweighted averages across industries.  The chart shows that the primary driver of increases in
embodied R&D, as measured by M1, has been increases in R&D spent on equipment assets rather than
changes in asset mix.  We can also see that the difference in embodied R&D growth between those
industries with high growth such as services and those with low growth such as manufacturing, is
primarily due to fact that high growth industries channel a higher fraction of their total investment into
goods whose embodied R&D is growing rapidly.  It is not because they have been changing the
composition of the goods in which they invest.

Recall that the qp’s that go into the equation for M1 were normalized, as theory dictates, to
equal one in the base year of the price deflator.  This is because the real marginal product of investment
must be equal across asset types.9  This means that by construction  M1(t), which is just a weighted
average of the qp’s, will be one in the base year.  Therefore, differences across industries in the level of
M1 only imply interindustry differences in growth in embodied R&D relative the base year.

The base year value of index M2, on the other hand, does not necessarily have to be equal
across industries nor equal to one.  This is true whether M2 is proportional to the true industry qi or to
the true industry (i.  Neither qi nor (i must be equal across industries, even in the base year. 
Nonetheless, since the actual levels of Mi

2 (t) are only meaningful in their relation to index values for
other years or industries, I normalize Mi

2 (t) to be one for average value (over the 1972-96 period) of
the index for the overall private economy.  All M2's are thus relative to the average extent of R&D
embodied in capital economy-wide.

Table 5 displays the results of the construction of M2.  Column 1 shows the mean level of the
index over the 1972-96 period.  The second column gives its annual growth rate over the same period. 
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10As was pointed out by Douglas Meade at Inforum, the value of embodied R&D in
Transportation by air may be artificially high since the R&D on airplanes includes R&D on military
planes financed by the Defense Department.

11The correlations shown refer to M1 and M2 constructed using a 15% depreciation rate. 
Assuming a 2% rate yield very similar results.

12Another interesting finding, not shown, is that the growth in M1 has a Pearson’s correlation
with the mean of M2 of 0.54 and a Spearman’s correlation of 0.65, both of which are significant at the
99% level.

The industries are ordered according to their mean value of M2.  For the overall economy, the growth
rate of the index was about 3%.  The ranking of industries seems quite reasonable.  Transportation by
air tops the list which is not unexpected since a great deal of R&D is done on airplanes.10  One can also
see that the service industries tend to be high on the list.  Though services are not capital-intensive, what
investments they do make tend to be in high-tech equipment such as computers.  The bottom of the list
also fits with our a priori notions of which industries tend to use low-tech equipment.  The final four are
Construction, Coal Mining, Trucking and warehousing, and Farms.

6. The Relationship Between Estimates of (( and Embodied R&D

To compare our two indices to the rates of embodied technological change (() that were
estimated for manufacturing industries using plant-level Census data, I had to convert each index from
the BEA 21-industry classification to a 22-industry scheme (spanning manufacturing) that is consistent
with the 22 industries for which I have estimates of (.

In section 3 I argued that M1 should proxy for the level of embodied technology and therefore
its growth rate should proxy for the rate of embodied technological change (().  I also argued that
either the level or the growth rate of M2 should be proportional (though not necessarily serve as a
proxy) to (.  Table 6 shows the ordinary and Spearman’s rank correlations, among the 22
manufacturing industries, between (8 and each of 3 variables: 1) the 1972-96 annualized growth in M1,
2) the 1972-96 annualized growth in M2, and 3) the 1972-96 mean of M2.11  Neither of the growth rate
appear to be correlated with (8.  Yet, the mean of M2 is positively correlated with an ordinary
correlation coefficient of 0.54, which is significant at the 99% level.  The rank correlation is 0.42,
significant at the 95% level.12

Viewed as a test of the reasonableness of the Sakellaris and Wilson estimated rates of
embodied technological change, this exercise yields mixed results.  It is encouraging that we have found
strong evidence that these estimated rates are positively and significantly correlated with observable
patterns of R&D spent on capital goods.  Yet, the nature of the correlation is not as one would expect. 
Whether these results reflect that interindustry differences in true embodied technological change are
proportional to interindustry differences in the average level of embodied R&D (as defined by M2), or
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13Defined as dlog(Y) - cLdlog(L) - cJdlog(J) - cSdlog(S) - (1- cL- cJ-cS)dlog(M), where Y is
gross output, L is labor, J is equipment, S is structures, and M is materials.  ci is the share of input I in
total costs.

14See Griliches & Mairesse (1995) for a discussion of the advantages and disadvantages of
different panel data estimation techniques.

whether they imply that our (8‘s are actually capturing an industry’s level of embodied technology and
not its rate of change, one cannot say.

A third possibility is that the growth rates of embodied R&D, as measured by growth in either
M1 or  M2, are badly mismeasured since the time-series dimensions of either the BEA capital flows
tables or the NSF product field R&D tables are highly suspect.  The annual capital flows tables are
based on input-output studies that 1) are only done every five years, and 2) are largely based on the 
occupational composition of industries, which may fluctuate due to reason unrelated to capital mix.  The
NSF data underlying the annual R&D by product field tables constructed in this paper has many
missing years that were filled in by interpolation as well as other discontinuities that had to be dealt with. 
For these reasons the time series dimension of the indices constructed in this paper may be less reliable
than the cross-sectional dimension.  This is especially problematic for M1 because the normalization that
causes M1 to equal one in all industries in the base year implies its interindustry differences in levels are
really determined by the time series movements.  Interindustry differences in the level of  M2, on the
other hand, should be fairly reliable though differences across growth rates may not be.  Nonetheless,
this intertemporal measurement error can only explain the lack of correlation that M1 and M2 have with
(8; it cannot explain why the growth of M2 would actually have a positive and significant correlation.

7.  Relationship Between Embodied R&D and the Solow Residual

One way of sorting out whether the positive correlation between M2 growth and (8 is due to (8
measuring the level and not the growth rate of embodied technological change or rather to the level of
M2 being a good predictor of the true rate of embodied technological change, is to see if either the
growth or level of M2 is a good predictor of the Solow Residual.13  If there is embodied technological
change, the Solow Residual (SRD) will be an upwardly biased estimator of true total factor productivity
(TFP) growth.  This bias is larger the larger is (.  Therefore, if or indices are positively proportional to
the true (, then they should have a positive effect on SRD.

The panel nature of the measured data on M1 or M2 allows us to separately investigate the effect
of these indices on SRD over the cross-industry dimension (emphasizing long-run/growth patterns), the
time-series dimension (emphasizing short-run fluctuations), or both.14  The cross-industry relationship
can be estimated using a “between” regression which regresses the intertemporal mean of the
dependent variable on the intertemporal mean of the regressor.  A “within” regression isolates the time-
series relationship by regressing the dependent variable net of its intertemporal mean on a similarly
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demeaned regressor.  Lastly, I estimate the total effect via a first-difference regression: the change in the
dependent variable between t and t-1 regressed on the change in the independent variable.  The first-
differencing simply allows for the intercept to vary by industry.

Table 7 shows the results from estimating these three different types of regressions.  The
dependent variable in these regressions is the Solow Residual.  The first column lists the independent
variable used.  The estimated coefficient (and standard error) on that variable, when all industries are
included in the regression, is shown in the second column.  The independent variable (aside from the
constant), which is denoted X in the table, is one of the three variables whose mean I compared to (8 in
Section 6 and Table 6.  They are the level of M2, the growth of M2, and the growth of M1.  The signs
and confidence intervals found in the between regression, which is the most comparable to the simple
correlations of Table 6, are quite similar to those correlations.  Again, the mean of M2 is the only
variable found to be positive and significant.  This seems to lend support to the hypothesis that the
positive correlation found between (8 and the mean level of M2 is due to M2 being a good predictor of
true embodied technological change, rather than (8 inadvertently capturing the level and not the growth
in embodied technology.

The within and first-difference regressions find no significant effect of these indices on SRD. 
This may be due to the intertemporal measurement errors, discussed above, that are likely in the data
on M1 and M2.  

On the Solow Residual side of the equation, data, particularly real output data, outside of
manufacturing is generally considered less reliable than manufacturing data.  Thus, the third column gives
the estimated coefficients obtained when only manufacturing industries are included.  Now, M2 shows
up as positive and significant in all three types of regressions (although in the between regression its
coefficient is no longer significant at the 5% level but rather at the 10%).  With but one exception, the
growth rate of M1 or M2 again has no significant effect on SRD.  The one exception is the growth rate of
M2 in the first-difference regression.

These results are quite consistent with other studies on indirect R&D which generally find
stronger effects on productivity in the cross-section.  Interestingly, they are also very similar to the
findings of Bartelsman, Caballero, and Lyons (1994).  They find that upstream suppliers' activity (as
measured by cost-share-weighted input growth) does not have a significant effect on downstream
productivity in their within estimates does in their between estimates.  It is possible that upstream
activity is simply a good predictor of upstream R&D spending, for they are certain to be correlated. 
Then, under the joint hypothesis that embodied R&D, as measured by M2, is proportional to embodied
technological change and that capital good price deflators do not fully account for quality change, some
of what Bartelsman, et al. find may be due to “spillovers” stemming from this price mismeasurement --
the same spillovers the cause upstream embodied R&D to have downstream effects on productivity.

Given our relative confidence in the measurement of the across-time means of M2, and their
demonstrated correlation with (8 and the Solow Residual, I then use these means to impute (’s for
nonmanufacturing industries (where (8‘s are not available) via the estimated relationship obtained from a
linear regression across manufacturing industries of (8 on a constant and the 1972-96 mean of M2.  This
regression yielded a constant of -0.041 (with a standard error of 0.039), an embodied R&D coefficient
of 0.058 (0.041), and an R2 of 0.102.
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The imputed values of ( for nonmfg sectors, computed using this estimated relationship, are
shown in Table 8.  There were five negative imputed values which were replaced with zero’s.  The (’s
range from 0 to 19%.  The magnitudes and the cross-sectoral ranking of these rates of embodied
technological change seem quite reasonable.

8.  Conclusion and Suggestion for Further Research

The results of this paper show that data on upstream product-field R&D can be used measure
the relative differences among industries in their rates of embodied technological change, which are an
inherently unobservable.  Armed with estimates of embodied technological change in manufacturing
industries, where plant-level longitudinal data is available, I was able to use the constructed measures of
embodied R&D to impute rates of embodied technological change for nonmanufacturing industries.

In future work, I plan to use the rate of embodied technological change to construct quality-
adjusted measures of industry-level capital stocks.  These capital stocks, along with other factor inputs,
will be used to estimate labor productivity equations to be used in a structural macro model. 
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FIGURE 1 - Decomposition of 72-97 q(i) growth
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Table 1

Sector Sector Title SIC (1987 basis) (8
1 Food & Tobacco 20 and 21 -0.056 (0.021)
2 Textiles and knitting 22 0.098 (0.030)
3 Apparel 23 0.004 (0.025)
4 Paper 26 -0.064 (0.027)
5 Printing & publishing 27 -0.053 (0.023)
6 Chemicals 28 -0.004 (0.024)
7 Petroleum refining & Fuel Oil 29 0.017 (0.039)
8 Rubber & Plastic products 30 0.084 (0.026)
9 Shoes & leather 31 -0.046 (0.052)

10 Lumber 24 0.007 (0.023)
11 Furniture 25 -0.056 (0.028)
12 Stone, clay & glass 32 0.006 (0.026)
13 Primary metals 33, 3462, 3463 0.080 (0.029)
14 Metal products 34, exc. 3462,3463 -0.005 (0.022)
15 Industrial Equipment, except computers &

office eqp.
35, exc SIC's in sector 16 0.031 (0.024)

16 Computers & other office equipment 3571,3572,3575,3577,3578, 3579 2.927 (0.202)
17 Electrical eqp. except communications and

elec. components
36, exc. 366, 367 0.049 (0.029)

18 Communication equipment 366 0.141 (0.044)
19 Electronic components 367 0.766 (0.059)
20 Motor vehicles & parts 371 -0.064 (0.028)
21 Other transportation equipment 37, exc. 371 0.098 (0.033)
22 Scientific Instruments 38, exc. 384, 385 -0.023 (0.034)
23 Other instruments 384, 385, 382, 386, 387 0.087 (0.039)
24 Miscellaneous manufacturing 39 0.029 (0.032)
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Table 2

Coefficients unbounded Coefficients bounded to be > 0

Info. Processing 1.818 (0.947) 0.058 (1.027)

Industrial Equipment -2.043 (1.225) 0.168 (1.329)

Transportation and related -1.396 (3.476) 0.019 (3.770)

Other Equipment -3.215 (3.126) 0.000 (3.391)

R2 0.135 -0.018
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Table 3

NSF Product Field BEA Asset Type
Other fabricated metal products Other fabricated metal products
Engines and turbines Internal combustion engines
Engines and turbines Steam engines
Farm machinery and equipment Agricultural machinery, except tractors
Farm machinery and equipment Farm tractors
Construction, mining, and materials handling
machinery

Construction tractors

Construction, mining, and materials handling
machinery

Construction machinery, except tractors

Construction, mining, and materials handling
machinery

General industrial, including materials handling,
equipment

Construction, mining, and materials handling
machinery

Mining and oilfield machinery

Metalworking machinery and equipment Metalworking machinery
Office, computing, and accounting machines Mainframe computers
Office, computing, and accounting machines Personal computers
Office, computing, and accounting machines Direct access storage devices
Office, computing, and accounting machines Computer printers
Office, computing, and accounting machines Computer terminals
Office, computing, and accounting machines Computer tape drives
Office, computing, and accounting machines Computer storage devices
Office, computing, and accounting machines Other office equipment
Other machinery, except electrical Special industry machinery, n.e.c.
Other machinery, except electrical Service industry machinery
Electrical equipment Electrical transmission, distribution, and industrial

apparatus
Electrical equipment Communication equipment
Electrical equipment Household appliances
Electrical equipment Other electrical equipment, n.e.c.
Motor vehicles and equipment Autos
Other transportation equipment Trucks, buses, and truck trailers
Other transportation equipment Ships and boats
Other transportation equipment Railroad equipment
Aircraft and parts Aircraft
Scientific and mechanical measuring instruments Instruments
Optical, surgical, photographic, and other
instruments

Photocopy and related equipment
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Table 4

Industry Annual Growth in M1 from 1972-96
Federal reserve banks 0.060223
Financial holding and investment offices 0.056326
Security and commodity brokers 0.056208
Educational services 0.054681
Legal services 0.054304
Nonfinancial holding and investment offices 0.051406
Insurance carriers 0.048055
Other services, n.e.c. 0.046981
Insurance agents, brokers, and service 0.043553
Metal mining 0.033859
Local and interurban passenger transit 0.03244
Construction 0.032087
Trucking and warehousing 0.031365
Miscellaneous repair services 0.030038
Other depository institutions 0.029107
Auto repair, services, and parking 0.027579
Transportation services 0.027511
Pipelines, except natural gas 0.027337
Agricultural services, forestry, and fishing 0.027015
Industrial machinery and equipment 0.026945
Oil and gas extraction 0.02675
Wholesale trade 0.02569
Leather and leather products 0.025068
Amusement and recreation services 0.024716
Personal services 0.024662
Water transportation 0.024662
Radio and television 0.023921
Sanitary services 0.023245
Electric services 0.022942
Tobacco products 0.02276
Business services 0.022741
Telephone and telegraph 0.02173
Gas services 0.021241
Coal mining 0.021213
Railroad transportation 0.02078
Nondepository institutions 0.020451
Real estate 0.020391
Health services 0.019346
Nonmetallic minerals, except fuels 0.018537
Motion pictures 0.018242
Retail trade 0.018131
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Farms 0.016786
Other transportation equipment 0.016002
Petroleum and coal products 0.015897
Instruments and related products 0.01572
Electronic and other electric equipment 0.015656
Hotels and other lodging places 0.015067
Printing and publishing 0.015057
Miscellaneous manufacturing industries 0.014373
Apparel and other textile products 0.013819
Chemicals and allied products 0.013725
Stone, clay, and glass products 0.013693
Food and kindred products 0.013077
Paper and allied products 0.012345
Primary metal industries 0.012215
Furniture and fixtures 0.011988
Lumber and wood products 0.011389
Fabricated metal products 0.007708
Textile mill products 0.00629
Rubber and miscellaneous plastics products 0.005228
Motor vehicles and equipment 0.004761
Transportation by air 0.004177
TOTAL 0.021214
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Table 5

INDUSTRY Mean M2 from 1972-96 Annual Growth in M2 from
1972-96

Transportation by air 2.282 -0.521
Telephone and telegraph 2.229 1.280
Radio and television 2.099 1.152
Legal services 1.611 4.767
Security and commodity brokers 1.557 4.843
Financial holding and investment offices 1.463 4.362
Insurance agents, brokers, and service 1.446 3.697
Business services 1.413 2.971
Insurance carriers 1.397 3.696
Other depository institutions 1.388 2.416
Nonfinancial holding and investment offices 1.388 3.672
Health services 1.369 3.603
Real estate 1.336 3.949
Hotels and other lodging places 1.322 4.858
Other services, n.e.c. 1.319 4.210
Amusement and recreation services 1.302 1.859
Electric services 1.301 1.576
Educational services 1.244 3.128
Federal reserve banks 1.218 2.901
Electronic and other electric equipment 1.177 1.581
Nondepository institutions 1.062 4.938
Wholesale trade 1.052 6.126
Industrial machinery and equipment 0.971 3.523
Apparel and other textile products 0.907 1.909
Other transportation equipment 0.895 4.095
Retail trade 0.834 5.326
Local and interurban passenger transit 0.818 1.709
Auto repair, services, and parking 0.797 5.420
Miscellaneous repair services 0.774 6.051
Motion pictures 0.759 5.751
Railroad transportation 0.743 5.301
Instruments and related products 0.740 6.494
Primary metal industries 0.718 1.963
Personal services 0.715 2.840
Gas services 0.678 6.193
Sanitary services 0.664 3.381
Tobacco products 0.644 3.660
Chemicals and allied products 0.642 1.802
Paper and allied products 0.635 1.018
Printing and publishing 0.634 4.240
Transportation services 0.630 8.731
Petroleum and coal products 0.610 0.386
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Leather and leather products 0.592 3.023
Oil and gas extraction 0.586 3.643
Furniture and fixtures 0.543 4.400
Stone, clay, and glass products 0.538 5.499
Miscellaneous manufacturing industries 0.534 4.350
Food and kindred products 0.531 2.406
Agricultural services, forestry, and fishing 0.530 -1.469
Pipelines, except natural gas 0.493 5.254
Fabricated metal products 0.452 1.968
Textile mill products 0.439 2.615
Water transportation 0.411 7.846
Lumber and wood products 0.403 3.092
Nonmetallic minerals, except fuels 0.389 0.096
Metal mining 0.386 -1.357
Motor vehicles and equipment 0.337 3.027
Rubber and miscellaneous plastics products 0.306 2.466
Construction 0.296 1.545
Coal mining 0.287 2.061
Trucking and warehousing 0.286 4.461
Farms 0.137 1.383
TOTAL 1.000 3.091
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Table 6

Variable Pearson’s (ordinary) Correlation
with (8 (p-value)

Spearman’s Rank Correlation
with (8 (p-value)

1972-96 Annualized Growth
rate of M1

0.078
0.729

0.188
0.401

1972-96 Annualized Growth
rate of M2

-0.248
 0.265

-0.183
0.416

1972-96 Mean of M2 0.536
0.010

0.423
0.050
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Table 7

X Estimate of B1:
All Industries (n=55)

Estimate of B1:
Manufacturing Subset (n=32)

“Between” Regression: SRD B B Xi i i= + ⋅ +0 1 ε
M2 0.449 (0.107) 0.517 (0.260)

dlog(M2) -0.049 (0.065) -0.188 (0.260)

dlog(M1) -1.661 (8.211) -19.697 (17.020)

“Within” Regression:  SRD SRD B B X Xit i it i− = + ⋅ − +0 1 ( ) ε
M2 0.002 (0.002) 0.0051 (0.0026)

dlog(M2) 0.013 (0.016) 0.0063 (0.0199)

dlog(M1) -0.003 (0.018) -0.0092 (0.0238)

Total/First-difference:  SRD SRD B B X Xit it it it i− = + ⋅ − +− −1 0 1 1( ) ε
M2 0.024 (0.015) 0.0446 (0.0222)

dlog(M2) 0.026 (0.015) 0.0448 (0.0194)

dlog(M1) 0.025 (0.024) 0.0079 (0.0325)
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Table 8 - Imputed ((’s for Nonmfg sectors

Sector Name (
Agriculture, forestry, and fisheries 0.0000
Metal mining 0.0000
Coal mining 0.0000
Natural Gas and Crude Petroleum extraction 0.0057
Non-metallic mining 0.0000
Construction 0.0000
Railroads 0.0305
Air transport 0.1038
Other transportation 0.0125
Communication services 0.1932
Electric utilities 0.0921
Gas utilities, and water and sanitary services 0.0131
Wholesale trade 0.0318
Retail trade, and restaurant and bars 0.0181
Finance and Insurance 0.0456
Real Estate 0.0751
Hotels, and personal and repair services (exc. auto) 0.0407
Business services 0.0604
Automobile services 0.0123
Movies and amusement parks 0.0409
Medical services 0.0857
Education, social services, membership organizations 0.0450


