
An Overview of Interdyme
Douglas S. Meade

Origins

Since the 1960s, INFORUM has been developing and refining macroeconomic interindustry
models. These models include various vintages of models of the U.S. and over a dozen other
countries. Parallel to this model development has been the creation of software and systems of
programs for building models. Prior to 1994, all of the models comprising the INFORUM
system of linked trade models were written in a framework called SLIMFORP, developed by
INFORUM. SLIMFORP is a collection of programs for preparing data, equations and
assumptions for models that will use vectors, matrices and macroeconomic variables, as well as a
template or structure for a simple model in Fortran. Behavioral equations for these models were
estimated with LS, and later G.

The LS and G regression and model building programs were both written primarily by Clopper
Almon, and developed from years teaching a course on aggregate economic modeling at the
University of Maryland. Along with this software grew a quarterly macro model of the U.S.,
which has now reached adolescence as QUEST. G represents a rethinking of the model building
environment. It is written in C, and oriented more towards the capabilities of the PC, such as
graphics and screen manipulation. The sister program Build takes equation files estimated by G
and writes models in C that can be compiled with a C or C++ compiler. A model such as
QUEST can be re-estimated, written by Build, recompiled and rerun in a matter of minutes1.

Interdyme is an endeavor to apply the lessons learned with G for building macro models to the
process of building macroeconomic interindustry models. It borrows much of the capabilities of
G/Build for the macro elements of the model, and introduces the power of C++ object-oriented
programming to the handling of matrices, vectors, equations and simulation output files. A
powerful program called Vam can be used to develop a collection of vectors and matrices needed
to build a model. Equations for both vector and macroeconomic variables can be estimated in G,
and then incorporated into an Interdyme model in a standardized framework2.

At this time, Interdyme models have been constructed for the U.S. (Iliad 320-sector model) and
several partner countries. System development is ongoing at INFORUM/USA, and updated
software can be easily distributed to partner groups by Internet. In turn, we incorporate into
Interdyme ideas and suggestions from our partners, leading to benefits that can be shared among
the entire group of partners.

1 The reader is referred to The Craft Of Economic Modeling by Clopper Almon, especially
chapters 3 and 4, for how to use G, and how to construct a model using Build.

2 The subjects treated in this overview are covered in more detail in INTERDYME: A
Package of Programs for Building Interindustry Dynamic Macroeconomic Models. Relevant
sections are referred to in this text.

Interdyme Overview 1 January 1996

What Is Interdyme?

Interdyme is a system of programs for building Interindustry Dynamic Macroeconomic models.
Interdyme concentrates on data development aspects of such models and leaves the model
builder with more time to devote to the formulation of model structure, equation estimation and
simulations. Unlike other model-building software such as GAMS, TSP or EPS, G and
Interdyme work together to produce compilable C++ code, which results in models that run much
faster, and can be debugged and tested in an environment such as Borland C++. Through the use
32-bit C++ environments such as in OS/2, there is virtually no limit to the size of an Interdyme
model. There are very few programs required in the entire Interdyme framework. These are
listed below:

Vam - The Vam (Vectors and Matrices) program creates a single file, called a Vam file,
which contains time series of vectors and matrices of the model, whether they be assumed or
calculated in the model. Vam puts into this file historical values of these varaibles and
exogenous projections of some of them. (Filling in future values of the endogenous vectors
and matrices is the business of Dyme, described below.) Vam allows for graphical or
spreadsheet display of data, as well as the capabilities to read or write data to and from
ASCII files. Vam can also be used to project matrices forward using across-the-row
indexes, it can scale a matrix to controls using the rAs technique, it can control groups of
elements of a vector to a pre-defined control total, and it can interpolate missing data. Vam
is used for organizing and creating vector and matrix data, as well as for viewing results of
simulations.

G - The G regression and time series management program is used to estimate behavioral
equations, as well as to manage databanks of data necessary to create macro variables,
vectors and matrices. (Macro variables are any variables that are not vectors or matrices.)

IdBuild - This program is used to write out functions that implement macro variable
equations, much as they are written with the Build program for aggregate models.

Fixer - The program implements the input of "fixes" for vectors, in a format much like the
"data" statement in G. A "fix" is either an exogenous projection or a modification of a
behavioral equation in the model.

Macfixer - This program implements fixes for the macro variables in the model.

Dyme - This is the simulation program, which must be written by the model builder. Vam,
G and IdBuild prepare some of the components that comprise the simulation model, and the
fixes read by Fixer and Macfixer are applied as the model runs. The principal output of
Dyme is a Vam file with calculated values of all the endogenous vectors and matrices.

Compare - This program can be used to make attractive tables of either historical or forecast
data, as well as to show some matrix input-output relationships.

Vam2Vam - This program allows for convenient copying of selected vectors from one Vam
file to another.

Here are some other general features of the Interdyme system:

Interdyme models are capable of either historical simulations or forecasts. There is no
restrictive "starting year" which must be constrained by the availability of historical data,
equation estimation interval, etc.

High level C++ classes for model building are available, including Matrix, Vector,
Equation, Tseries (macrovariables), GBank and VamFile. These classes encapsulate the
behavior of commonly used components in a well-defined way.

Interdyme Overview 2 January 1996

A natural syntax for matrices and vectors can be used in the model code. For example, if b
and c are vectors, and A is a matrix, one can write

b = A*c;
as a single line of code in an Interdyme model.

In general, model code is concise and understandable. Macro variable functions written by
Idbuild parallel the contents of the G .SAV files used to create them, and all macro variable
names and equation parameter values are shown transparently. Equations for vector
elements, (such as employment by industry) must be written by the model builder, but
follow a common template, or pattern.

A simple model called "Slimdyme" is distributed with the Interdyme model source code.
This Slimdyme indicates the code needed to build the simplest model in Interdyme, and is
based on a 33-sector Chinese I-O table.

Planning An Interdyme Model

Perhaps the most important step in successfully building an Interdyme model is careful planning.
What matrices and vectors will be required in the model? Over what horizon must the model
forecast, and how far back should historical data be maintained? What will be the sectoring
scheme of the model, and what will be the base year of the constant price data? What macro
variables will be required? What are the important exogenous variables, and which variables
should be endogenous?

Interdyme Overview 3 January 1996

Figure 1. VAM.CFG File for Chinese Slimdyme Model

Matrices and Vectors of the Slimdyme Model
#
1980 2000 # Starting and ending years of vam
#
#Name |Number of |Files of titles of| Description
|row col lag| rows cols |
#
Matrices
am 33 33 0 sectors.ttl sectors.ttl # the input output matrix
final demand vectors
fd 33 1 0 sectors.ttl # Total final demand
#
Output, employment, productivity
#
out 33 1 3 sectors.ttl # Output
im 33 1 0 sectors.ttl # Imports
sdc 33 1 0 sectors.ttl # Final Demand Discrepancy
#
Income by sector
#
va 33 1 0 sectors.ttl # Total value added.
unitva 33 1 0 sectors.ttl # Unit value added
#
Prices and wages
#
prices 33 1 3 sectors.ttl # Output prices
#
Vectors related to fixes
#
fix 200 1 0 fix.ttl

While in the planning stage, it is helpful to develop some preliminary files for the model. These
files will be needed later, and they help one to think out the model structure. These files are the
VAM.CFG file and the titles files (extension .TTL).

The central program of Interdyme for data development is called Vam. The data file this
program operates on is called a Vam file, and the structure of the file is defined by the file
VAM.CFG (CFG is for "configuration"). The VAM.CFG file is a list of all the matrices and
vectors which will be included in the Vam file. All of these matrices and vectors will be
available for use in the forecasting model. The VAM.CFG file for the Slimdyme model of China
is shown in Figure 1.

The dates at the top of the VAM.CFG file should be 4-digit dates, and should span the interval of
the historical data and the allowable simulation period for the model. The rest of the VAM.CFG
file consists of a list of matrices and vectors that will be contained in the Vam file, and available
to be used in the forecasting model. For each matrix or vector, the name, number of rows,
number of columns, number of lags, and titles files are shown. Any text following a '#' character
on a line is treated as a comment. The name of the matrix or vector is the name as it will be
known in Vam and in the model. Row and column sizes are self-explanatory, except that vectors
are generally column vectors (i.e., with one column). The titles files are used by the Vam
program to display short sector titles when viewing the data in spreadsheet format, with the Vam
"show" command.

The standard titles file, which shows the sectoring of the input-output table, is named
SECTORS.TTL. A part of the file for the Slimdyme version of the Chinese model is shown in
Figure 1.

The names at the left are abbreviations for the sectors, which will appear when headings are
needed in the spreadsheet display of vectors and matrices in Vam. This file is in fixed format,
with 12 columns required before the semicolon. The letter 'e' must be in column 18. The sector
number, in columns 14 to 17 is optional, but recommended. The sector title follows, enclosed in
quotes. In this file, one can also include documentation to the right of the sector title, if so
desired. This could include classification definitions, comments about the sector, or other
information.

Figure 1. SECTORS.TTL File for Chinese Model

Agricul ;1 e "Agriculture" largest employment sector
Coal ;2 e "Coal"
CrudeOil ;3 e "Crude Oil & Natural Gas "
MetalOre ;4 e "Metal Ores"
NonMetMin ;5 e "Non-Metallic Minerals"
Food Pro ;6 e "Food Processing "
Textiles ;7 e "Textiles"
Clothing ;8 e "Clothing and Leather"
Wood&Furn ;9 e "Timber and Furniture"

Interdyme Overview 4 January 1996

The Vam Program3

Once a VAM.CFG file and the necessary titles files have been created, you can begin to build a
Vam file of matrices and vectors. A Vam file is not the same as a G bank, but holds only
matrices and vectors listed in the VAM.CFG file. Whenever you create a new VAM.CFG file, or
make alterations to an existing VAM.CFG file, delete any Vam files with the name HIST.VAM
that may be in your model directory. Then start up the Vam program using no arguments. The
first time you start Vam with the new or changed VAM.CFG file, it will take a while to initialize
and show the user prompt (the '|' character). This is because it is writing out the initial empty
HIST.VAM file for the list of matrices and vectors over the time interval specified in VAM.CFG.
You can use the "listvecs" command in Vam to see the current list of matrices and vectors. If you
type "show <vecname>", where <vecname> is one of the available vectors, you will see a
spreadsheet with sectors down the row, and years across the column headings. Until you supply
data to the vector, it should be all zeroes.

Some of Vam's mos important capabilities are listed below. Details can be found in chapter 2 of
the Interdyme manual.

1. Vam uses a simple interactive format like G, with short, easy-to-remember commands.
Files of commands can be executed in batch mode using the "add" command, as in G.

2. Data for either vectors or matrices can be read in from ASCII text files, in a variety of
formats, including formats that could easily be exported from Lotus or Excel.

3. G banks of all types can be assigned, so that vector or matrix data that has already been
organized in G can be easily transferred to a Vam file.

4. Data can be "massaged" in a number of ways. Vectors or matrices can be indexed, or
moved forward by the growth of another vector or series. The rAs technique can be used
to balance a matrix to known row and column controls. Whole vectors, or selected
groups of sectors can be forced to sum to a control total. A powerful vector calculate
("vc" command) feature allows for matrix and vector calculations using a natural syntax.

5. Data can be viewed or edited in a convenient spreadsheet format, using the "show"
command.

6. Graphs can be made of vector or matrix elements, and either printed or sent to a .TIF file
for inclusion in a document.

7. Once data have been organized into a Vam file, attractive tables can be made using the
Compare program. For those already familiar with Compare, the stub files for Vam file
data are identical to those for printing the same data from G banks or Dirfor files.
Compare can also make matrix listings using matrices and vectors from a Vam file.

8. Vector and matrix data can be saved to ASCII text files, for use in other programs.

9. G banks can be created, using the "Vam workspace" feature.

3 The Vam program is covered in detail in the Interdyme manual, chapter 2.

Interdyme Overview 5 January 1996

Macro Variables and Idbuild4

A macro variable in Interdyme is any variable that should logically be treated as a single
time-series. For example, a variable such as an interest rate that will be predicted with a
behavioral equation is a macro variable. Its equation will be estimated in G, and incorporated
into the model as described below. Likewise, exogenous variables such as population, the money
supply, and tax rates are macrovariables. Projections of these variables can be read into a G
databank which is used with the simulation program, or have fixes applied to them by using the
Macfixer program. Aggregates of vector variables, such as total consumption, total investment,
etc., are also conveniently stored in macrovariables. The many relationships inherent in the
numerous identities in the national accounts can be implemented using macro variables.

Macro variable equations are estimated in G, and results are saved to .SAV files, which capture
output from G relating to transformations of variables, and regression results. For example, the
following simple add file for G, DISINC.REG, estimates a regression for total disposable income
based on total wages in the JIDEA model of Japan:

DISINC.REG
bank wang # assign a G data bank
lim 1975 1991 # set limits of the regression
save disinc.sav # start saving equation results
r disinc = totwag # do the regression
save off # close the save file of equation results
gr * # view a graph of the regression fit

This creates the following .SAV file:

DISINC.SAV
r disinc = 20191.218824*intercept +
 1.144324*totwag

The program Idbuild is run with a master add file, usually called MASTER, which includes many
"iadd" (Interdyme "add) commands the bring the various .SAV files into the model. Most of the
.SAV files contain behavioral equations. For each equation, C++ code is generated to create a
callable function that will calculate the variable according to the results in the .SAV file. The
name of the function will be the root name of the .SAV file with an 'f' appended. For example,
the above equation is written out (in a file called HEART.CPP) as:

void disincf()
{
/* disinc */ depend =20191.218824+1.144324* totwag[t];
 disinc.modify(depend);
 }

The function disincf()can be called from anywhere in the forecasting program, when the
variable disinc needs to be calculated. Note for now that the variable totwag is referred to
with the index t. This variable t is always the value of the current forecasting year in Interdyme,
and indexing a macro variable with that variable retrieves the value for the current forecasting
year. Likewise, totwag[t-1] refers to the lagged value. The macro variable calculated in the
above function is called disinc. After the calculated value from the equation is stored in

4 Macro variables and Idbuild are covered in detail in chapter 3 of the Interdyme manual.
Fixes on macro variables are covered in chapter 5, and the use of macro variables in the simula-
tion model is covered in chapter 6.

Interdyme Overview 6 January 1996

depend, the modify() function is called, with depend as its argument. This function applies
fixes to macro variables, and rho-adjustments5.

In addition to the .SAV files for behavioral equations, Idbuild also recognizes a special file
called PSEUDO.SAV. This file does not contain equations, but introduces data for macro
variables that are exogenous or will be determined in the model by identity.

Even with a fairly large macro component of a model, Idbuild runs fairly quickly. When it
finishes, it has created the files listed in Figure 3. Whenever any new macro variable equations
are estimated, or new variables are added to PSEUDO.SAV, Idbuild should be run again, to
re-generate the files in Figure 3. Then the model should be recompiled, as described in the
section below on the forecasting program.

Figure 3. Files Created by Idbuild

Estimating a Sectoral Equation in Interdyme6

Since an Interdyme model contains equations for employment, investment and many other
variables at a detailed industry or category level, the estimation of sets of similar equations is
important. For example, it is convenient to estimate employment for all industries of a model in
the same G add file. (Frequently, only a small number of different types of equations are used,
even though there are equations for many sectors.) In this case, it becomes advantageous to save
the equation parameters for all sectors to a file, called an equation file. These files generally
have the extension .EQN.

In the forecasting model, these equation parameters are read in at run time, so that they do not
need to be a compiled part of the model. In this way, one can re-estimate and test equations
without having to recompile the model.

In G, the creation of the equation file is accomplished with the "punch" and "ipch" commands. A
typical add file to estimate the a set of equations for employment might look like the following:

ba employ
add mkvar.add # calculate some variables needed in employment equations

5 See the section below on rho-adjustments.

6 This topic is covered in more detail in chapter 4 of the Interdyme manual.

TSERIES.INC A C++ include file that declares all the macrovariables in the model as type Tseries.
This file will be included as part of the simulation program.

HEART.CPP A C++ program file that contains the functions for all macrovariable behavioral
equations introduced as .SAV files in Idbuild. This program module becomes part of
the simulation program.

CALLALL.CPP A C++ program file that contains the function callall(), which calls all of the
macrovariable equations. This program module also becomes part of the simulation
program.

HIST.BNK,
HIST.IND

A G databank, containing all the macrovariables needed for behavioral equations, as
well as all macrovariables defined in PSEUDO.SAV

Interdyme Overview 7 January 1996

punch employ.eqn 15 7 1993
add empa.reg 1 "Agriculture" # type a equation
add empb.reg 2 "Coal" # type b
add empc.reg 3 "Crude Oil" # type c
add empb.reg 4 "Metal Ores" # type b
.
.
punch off

Note the "punch" command in the above example, which opens the equation file EMPLOY.EQN
for writing, with up to 15 equations, with up to 7 estimated parameters each, with estimation
period ending in 1993. There are 3 different types of equation used for employment, called types
'a', 'b', and 'c'. Each type uses a different G add file to estimate a regression. The file
EMPA.REG is:

EMPA.REG -- Version "a" of the employment regressions.
ti %2
r emp%1 = out%1, out%1[1], out%1[2]
gr *
ipch emp %1 a

The %1 and %2 in the above file are add file command line arguments, which in this case are the
sector number and the title. After the regression has been calculated, the "ipch" command writes
the equation parameter information out to the equation file. Figure 4 below shows a sample
equation file. The first equation indicates that this is a type 'a' equation for sector 1, and there are
4 estimated parameters. The first number shown on each line is the estimated value for rho.

Figure 4. A Few Lines of an Equation File

The equation file is then read into the model as an Equation object, described in the section on
Interdyme classes. The Equation object contains the equation parameters, the number of
equations, the values for rho for each sector, and other information.

Writing the Simulation Program: DYME.EXE7

"Building" is a word often applied to the process of developing models. Perhaps this is because
building models is much like building a house. You must first draw plans and make
measurements. The general infrastructure, such as plumbing, electricity, network and phone,
must be supplied. After surveying, you lay the foundation, and then build up from there. You
put in the expensive wood paneling after the windows and roof are in place.

A set of program files that implement a simple Interdyme model, called Slimdyme, provides a
general plan for the program structure of the model. The model builder works on and elaborates
the program file MODEL.CPP. The other files contain the "plumbing and electricity" for your

7 The simulation program, DYME.EXE, is covered in chapter 6 of the Interdyme manual.

 15 7 1993
emp 1 a 4
 1 2 3 4
 0.319757 -1.65843 -0.0458105 -0.00602098 -0.0147023
emp 2 b 4
 1 2 3 4
 0.750327 2.48859 0.0411307 -0.108004 -0.0694493

Interdyme Overview 8 January 1996

model. You shouldn't need to change them unless you have ambitions to be a plumber or
electrician.

The Slimdyme model includes the variables output, final demand, imports, total value added and
prices, using 33-sector Chinese input-output accounts. It performs a Gauss-Seidel output and
price solution, calculating output and imports from final demand, and prices from value added
and output. It is liberally peppered with comments indicating where the various sections of a
typical INFORUM model would go.

If you plan to build a macroconomic interindustry model with Interdyme, perhaps the best place
to start with Slimdyme is to get your data for the above variables into the Vam file, and try to get
the Slimdyme model to work with your data. You may have to edit the section which declares
the matrices and vectors of the model. Note that these are of type Matrix and Vector, which
are types of objects in Interdyme.

In Slimdyme, this section consists of the following lines in MODEL.CPP.

 // Matrix and Vector declarations should go here:
 // Example of Matrix:
 Matrix A("am",'y','n');
 // Examples of Vector:
 Vector out("out"), im("im"), fd("fd",'y','y'), prices("prices"),
 va("va",'y','n'), unitva("unitva");
 Vector fix("fix"); // Necessary for Vector fixes.
 Vector sdc("sdc",'n','y'); // Necessary for discrepancy.
 Vector dd(NSEC);

The name in quotes in the above declarations is the name of the matrix or vector in the Vam file.
The characters after the name are the read/write flags. Using these flags, the model builder has
complete control over whether a matrix or vector will be read from or written to the Vam file
during each year of the simulation. Value added ("va") is read but not written, since it is not
changed by the model. The discrepancy ("sdc") is written, but not read, since it is created only in
the last year of output data, and then remains the same.

On your first attempt with Slimdyme, you should also estimate a set of import equations for the
model. The form of this equation should be a linear regression of imports on domestic demand,
defined as output plus imports, or intermediate plus final demand before subtracting imports.
Then, assuming your import equation file is called IMPORTS.EQN, the following line of code in
MODEL.CPP initializes the Equation object:

 Equation imports("imports.eqn");

This import equation object is then passed to the Seidel function, which calculates output and
imports in the Gauss-Seidel algorithm:

 Seidel(A,out,im,sdc,imports,fd,triang,toler); // get gross output

The other arguments passed to Seidel() are the A-matrix (A), output (out), imports (im), the
discrepancy (sdc), final demand (fd), a triangularization vector (triang), and an optional
tolerance for convergence (toler).

As mentioned above, as a model builder, you will do most of your programming in the file
MODEL.CPP. Specifically, most of your work is within a function called loop(). In addition to
this, you must usually write functions to implement the equation calculation of each set of vector
equations, such as consumption, investment, exports or employment.

Interdyme Overview 9 January 1996

Figure 5 summarizes the structure of the loop() function, which is important for understanding
the structure of an Interdyme program from a bird's eye view. The main part of this function is a
loop over the years of the simulation, which run from godate to stopdate. Before this loop
some data must be declared, which will be used throughout the forecasting model. This includes
matrices and vectors which will be read from and written to the Vam file, as well as any
Equation objects used in the model. At the beginning of each year, the data from the Vam file is
automatically read in by the load() function, which also loads any fixes are present (these are in a
special Vector, called "fix").

Final demand categories, such as consumption, equipment and structures investment and exports
are calculated first, using vector equations. These are summed to yield total final demand, before
imports have been subtracted. This vector is then passed to the Seidel() function. The Seidel()
function calculates outputs and imports, and if necessary, calculates or applies a discrepancy
during the Seidel calculation. Next employment by industry is calculated, using the outputs
calculated in Seidel(). A wage rate function generally is the first function calculated on the
price/income side. From wage rates and employment, we can calculate total wages. Other
equations come next, for categories of value added such as profits, depreciation, rent and indirect
taxes. Pseidel() is the function called to perform the Seidel calculation of prices from unit value
added. Finally, aggregate prices, other aggregates, and some macrovariables are calculated.

Within each year of the model, the model usually needs to iterate before reaching convergence, if
it is not strictly recursive. For example, in a typical model, consumption is based on income and
prices, which are not calculated until the income/price side of the model is finished. On the first
iteration, guesses must be made for these right hand side variables. They can be started at the
previous year values, or they can be trended forward from two previous years. Consumption is
calculated with these first guesses of these variables first. After the entire model is finished for
that iteration, it returns to re-calculate consumption, using the just-calculated values of income
and prices. It repeats this sequence until converging on some appropriate variable or set of
variables.

The Classes of Interdyme

You have already been introduced to a few of the classes of Interdyme, such as Matrix, Vector
and Equation. These are the classes you will work with most directly. Another class, called
Tseries, is used in the implementation with macrovariables. Pmatrix, which means "packed
matrix", is another matrix class, which is convenient for working with large, sparse matrices.
Finally, deep in the "plumbing" of Interdyme are classes called GBank, VamFile, FixBank and
MacFixBank that handle the infrastructure of working with G databanks, Vam files, vector fixes
and macro fixes.

What exactly is a "class"? A class in C++ defines a new type of data. You can think of the
predefined data types in C++, such as integers (int), real numbers (float), and characters (char) to
be classes, in a sense. They are simple, scalar objects, but already the compiler must know that a
* sign between two floats means to do something different with the binary representation than a *
sign between two integers. In a similar way, with a class Matrix and Vector, we can define a
new "overloaded" version of the * operator that means to do one operation when both operands
are of type Matrix, and a different operation with Matrix and Vector.

Interdyme Overview 10 January 1996

A C++ object consists of a set of data, along with functions and operators defined to operate on
that data. For example, the Vector class contains a function called fix(), which is called to
impose fixes on the Vector for the current year. If the vector were emp, and the current year t,
applying the fixes is done with the following line of code:

emp.fix(t); // Apply fixes to employment.

To obtain the sum of all elements of a Vector, a sum() function is defined. If totemp were a
macrovariable (class Tseries), then we could store the sum of employment as follows:

totemp[t] = emp.sum();

In fact, the subscript operator [] on a macrovariable is an overloaded operator. Usually the year t
is a four-digit year, like 1995. You can be assured that totemp does not have 1,995 elements
contained in it! Rather, the Tseries object type knows that if 1975 is the base year of the
model, then the year 1995 is in position 20 of the data component of totemp (which starts at 0
position). In this way, we can assign use the current or lagged values of a macrovariable in a
natural, easily understandable format. The Tseries object also has a function called
modify(), which applies fixes and rho-adjustments. This is called by every macrovariable
equation function written by Idbuild in HEART.CPP, but can also be inserted by the model
variable for any macrovariable, anywhere in the model code.

The Equation object also has a subscript operator defined for it, so that it can be addressed just
like a two-dimensional array in C++. If you have declared an Equation object called
imports, then imports[i][j] is the j'th parameter for the i'th equation. The following
section, which shows a typical equation function, shows some of the other functions of
Equation.

While the many classes in Interdyme may seem daunting at first, each of them has been devised
to make the writing of models easy and natural.

void loop() {
// Declare Matrix and Vector objects.
// Declare Equation objects.
for(t=godate;t<=stopdate;t++) {

// Load data (and fixes) for this year.
while(not converged) {

// Calculate final demands.
// Call Seidel() to calculate output.
// Calculate productivity and employment.
// Calculate wage rate and total wages.
// Calculate other value added categories.
// Call Pseidel() to calculate prices.
// Perform aggregation, identities and macrovariable equations.
}

// Call all equations again, with rho-adjustment error calculation.
// Store data.
}

} // end of model.

Interdyme Overview 11 January 1996

Figure 5. Overview of Interdyme loop() Function

A Typical Equation Function in an Interdyme Model8

Most of the time you spend building a model will probably be devoted to estimating and coding
the various behavioral equations for the vectors in the model, such as components of final
demand, value added, employment and wage rates. These equations generally follow a common
pattern, or template. Once you have struggled through writing the first equation function, the
others are much easier.

This section will present briefly the code for the simple employment by industry equation
presented earlier. This is not the simplest function that could have been presented, but it is short,
and provides a good example of how to handle lagged vectors in Interdyme.

A lagged vector in Interdyme is handled in the following way. First, both a Vector and a
Matrix are declared with the same tag name "out". The two variables must be given two
distinct C++ variable names, say out and Out. As we shall see below, the Matrix version of
output can be used to access lagged values. The first subscript of this matrix is [0] for the current
year value, [1] for the previous year, and [2] for the year before that. In other words, out[k]
will be the same as Out[0][k], for all industries k. Out[1][k] represents output for industry
k, lagged once.

The vector "emp" must also be declared, and an employment Equation object must be
initialized. This is done with the following lines of code, near the top of the loop() function.

Vector emp("emp"), out("out");
Matrix Out("out");
Equation empeqn("employ.eqn");

Further down in the loop function, the Seidel() function is called, to calculate output and
imports. After Seidel is finished, the employment equation function empfunc(), can be called.

Seidel(A,out,im,sdc,imports,fd,triang,toler); // get gross output
empfunc(emp,Out,empeqn);

The employment function itself is included lower in the MODEL.CPP file, and is simply the
following:

/* empfunc() -- simple employment function */
short cogfunc(Vector& emp, Matrix& Out, Equation& empeqn) {

short n, i, k;
float empcalc, empact, emp_rho;
char which;
n = empeqn.neq; // number of equations

for(i = 1; i <= n; i++){
 k = empeqn.sec(i); // sector number k for each equation i
 if(k==0) // no equation

continue;
 which = empeqn.type(i); // equation type
 empact = emp[k]; // save actual value for rho-adjustment

 if (which == 'a'){ // this is the type 'a' equation
 empcalc= empeqn[i][1] + empeqn[i][2]*Out[0][k]

 + empeqn[i][3]*Out[1][k] + empeqn[i][4]*Out[2][k];
 }

 else {

8 Covered in detail in chapter 4 of the Interdyme manual.

Interdyme Overview 12 January 1996

 printf("Unknown equation type %c in empeqn, category %d.\n",
 which, i);

 tap(); // Pause so that error message can be read.
 continue;
 }

 emp_rho = empeqn.rhoadj(empcalc,empact,i); // rho-adjustment
 emp[k] = emp_rho; // save rho-adjusted value
 }

emp.fix(t); // apply fixes
return(n);
}

The equation function is passed three arguments, employment (emp), the Matrix of current and
lagged outputs (Out), and the employment Equation object. The body of the function
illustrates a typical pattern for calculating a vector equation. Here is an explanation of the logic:

1. Find the number of equations with n = empeqn.neq.

2. Loop through all equations, for each equation, determine the sector number, and the type
of equation. This is done with the Equation class functions type() and sec().

3. Save the actual value for doing the rho-adjustment.

4. Calculate the equation with an expression parallel to its estimated equation in G. Note
again the syntax for referring to lagged values of output.

5. Rho-adjust9 the calculated value, using the Equation rhoadj() function, the
calculated and actual values, and the equation number. Save the result in the vector
element.

6. Apply the fixes, if any.

These steps are self-explanatory, except for the fixes and the rho-adjustment. They are described
in the next two sections.

Fixes and How to Use Them10

Fixes serve the following purposes:

Supplying values for variables which must be exogenous.

Overriding the calculation of single behavioral equations.

Modifying the calculation of single behavioral equations, either by addition or
multiplication.

Controlling a set or group of sectors in a vector to sum to, or move like, a certain control
total.

For vector variables, fixes are applied using a program called Fixer. Fixer reads its input from a
file, usually named VECTORS.VFX. The .VFX file can also contain group definitions, which
can be used in Vam or in the specification of fixes. The following file may be used to apply fixes
to our hypothetical 15-sector model.

9 See the section below on rho-adjustments for more details.

10 Covered in detail in chapter 5 of the Intedyme manual.

Interdyme Overview 13 January 1996

Figure 6. Sample of Vector Fixes File

The group definition establishes a named group, which can be accessed in most syntaxes by
prefixing its name with a colon (':') character. For example, the group called "Manufacturing" is
defined to consist of sectors 4 and 5. The second fix in the file is an index (ind) fix on the total
of manufacturing employment. It should move like the index shown. When the Fixer program is
run on this file, it reads actual data for 1992 from the Vam file, calculates the sum of
manufacturing employment for this year, and then writes out a projection of manufacturing
employment that moves like the specified index.

Where are the vector fixes written? To the Vam file itself, in a vector called "fix". In fact, if you
want to use vector fixes, you must declare a vector "fix" in the VAM.CFG file, and it also must
be declared at the top of the loop() function:

Vector fix("fix");

When the model is running, and control is in the employment equation function, the line of code

emp.fix(t);

applies any single-sector or group fixes to the elements of the emp vector. For example, the
employment in the two manufacturing sectors will be scaled to control to the group fix on
manufacturing employment shown in Figure 6.

Macrovariables are fixed in a way similar to vector variables. The fixer program is called
Macfixer, and the ASCII fix file is usually MACROFIX.MFX. This file usually contains
projections of exogenous macrovariables, or modifications and overrides to macro equations.
For example, the following lines of the fix file show how to project population (pop) growth at
1.8% per year, and to specify a projection for m2.

population - grow at 1.8%
gro pop
1993 1.8
2000 1.8;
money supply
ovr m2
1992 3617.800 3788.100 3907.300 4087.100 4283.700
1997 4498.900 4729.500 4972.000 5226.900;

The available types of fixes for both vector and macro variables are ovr (override, or "actual"),
ind (index by link point), gro (exponential growth rate), stp (growth rate in steps), cta
(add-factor or constant term adjustment), and mul (multiplicative factor). In addition, the
macrovariables use rho (rho-adjustment fix) and skip (skip behavioral equation, use data in
the G bank).

group Manufacturing
 4-5
ovr emp 1
 1993 3.1 3.2 3.3
 2000 4.0;
ind emp :Manufacturing
 1992 1.0 1.05 1.12 1.15 1.17 1.19
 1998 1.22 1.25 1.28;

Interdyme Overview 14 January 1996

Rho-Adjustments on Vector and Macro Variables

Rho-adjustments are often desirable because of the well-known "jumping on" or "jumping off"
problem. This occurs when the fit of an equation is not very close in the last year of estimation,
and therefore not likely to be close in the first year of forecast either. In this case, viewing
historical data beside forecast, we observe a distinct jump (or even a leap!) in the first year of
forecast.

The rho-adjustment procedure works as follows:

1. In the starting year of the rho-adjustment (called the rhostart year), an error for the
equation is calculated and stored. The error is added back to the calculated value, so that
the forecast value for this year is really the actual value.

2. In forecast years, the equation is adjusted by
xt = xt + ρnε
where:

 is the final rho-adjusted valuext

is the calculated equation valuext

 is the estimated value of rho, the autocorrelation coefficient of the residuals.ρ
 is the difference in years between the forecast year and the rhostart year.n
 is the error calculated in the rhostart year.ε

With vector fixes, the value for rho is stored in the equation file. With macro fixes, it
must be supplied as a rho fix.

In the simulation model, vector rho-adjustments are performed with the rhoadj() function of the
Equation object, which stores the values for rho and the error for each equation in its data area.
Macrovariable rho-adjustments are performed with the Tseries modify() function, which is
automatically called in all functions written by Idbuild. If you supply an exogenous variable in
the fixes file, you must supply the call to modify in your program code, or the exogenous fix will
not be applied. For example, the following code fixes the exogenous variables pop and m2:

float depend;
pop.modify(depend);
m2.modify(depend);

Making the First Simulation with Interdyme

After changing program code in MODEL.CPP, or after making changes to the macrovariables by
running Idbuild, the model must be recompiled and re-linked, with the C++ compiler. If you are
using Borland C++, there is a "make" file already supplied with Slimdyme, that you can use with
little or no modification, called DYME.MAK. To compile and link the model, type:

make -fdyme

from the DOS prompt. If you have errors, they will probably be in MODEL.CPP, which you
have been editing. Check for missing semicolons (';') at the end of statements, misspelled
variables, quotes or comment characters that have no match, or mismatched braces. Another
common error is either to forget to declare a variable, or to declare a variable as one type, such as
a Vector, and then try to use it as a variable of another type, such as a Tseries or an
Equation.

Interdyme Overview 15 January 1996

A file called DYME.CFG is used to specify various parameters and filenames to the model
simulation, such as the model title, the interval of the simulation, the discrepancy year, and the
names of the G bank for macrovariables, the fixes files, and the Vam file that will be used to do
the simulation. Figure 7 shows a sample DYME.CFG file.

Figure 7. Sample DYME.CFG File

In this file, text before the semicolon is comment, to indicate the purpose of each configuration
item. The first line shows the run title, which will be saved to the Vam file that holds the
simulation. The simulation will start in 1993, and run to 2050, and the output discrepancy will
be calculated in 1993. "Use all data?" is answered "yes" for normal forecasts, and "no" for
historical simulations. The vector fixes and macro fixes file names are standard. The model will
forecast macrovariables in the G bank DYME.BNK, and the Vam file will be DYME.VAM. The
rest of the parameters control model debugging and number of iterations for the Seidel function
and for the whole model. All of these parameters can be accessed from within the MODEL.CPP
code. For example, the starting and ending date are godate and stopdate.

A file called RUN.BAT is often used for running the model, as it enforces the proper sequence of
operations. These are:

1. Copy the macro bank HIST.BNK/HIST.IND created by Idbuild to
DYME.BNK/DYME.IND.

2. Copy the Vam file with historical data HIST.VAM to DYME.VAM.

3. Run the Fixer and Macfixer programs

4. Run the model, DYME.EXE

5. Copy DYME.VAM, DYME.BNK and DYME.IND to a new file, to save the simulation.

Figure 8 shows a typical RUN.BAT file. The simulation results are in the Vam file/G bank
combination NEWSIM.

Title of run ;The Little Model That Could - First Simulation
Start year ;1993
Finish year ;2050
Discrepency yr ;1993
Use all data? ;yes
VecFix file ;Vecfixes
MacroFix file ;Macfixes
Vam file ;dyme
G bank ;dyme
debug start yr ;2040
Max iterations ;20
Full model iteration;20

Interdyme Overview 16 January 1996

Figure 8. Typical RUN.BAT

Viewing Historical Data, or Results of a Simulation

Once a simulation has finished and the results are stored in a file, they can be analyzed with the
INFORUM tools G, Vam and Compare. Either G or Vam can be used to assign the simulation
macrovariable bank (DYME.BNK) and type or graph the forecasts of macrovariables. For
example, to type the forecast of total gdp, you could do:

ty gdp 1993 2050
To make a simple graph of GDP, which includes historical and forecast data, you could type:

ti Gross Domestic Product
gr gdp 1977 1993 2050
In Vam, you can type or graph single elements of any vector or matrix in the model. For
example, to graph the history and forecast of output for sector 1:

ti Agriculture, Forestry and Fisheries
subti Output in Constant Dollars
gr out1 1977 1993 2050

To graph the diagonal coefficient in the A-matrix for Agriculture:

ti Coefficient for 1 Agriculture, Forestry and Fisheries
subti Sales to 1 Agriculture, Forestry and Fisheries
gr am1.1 1977 1993 2050

In Vam the "show" command is also a convenient way of quickly viewing forecasts and data on
the screen. If you wanted to view the output vector, from the Vam prompt type:

show out

If you wanted to view the A-matrix for the year 2035, you could type:

show am y 2035 # 'y' is to view by year

If you wanted to view the A-matrix over time for row 3:

show am r 3

Compare is also extremely useful for generating printed tables from an Interdyme historical
dataset or forecast. When running Compare, choose databank type 'v' for Vam file. Compare
will automatically search for a G bank, compressed bank, or hashed bank of the same name as the
Vam file to assign for searching for macrovariables. Therefore, Compare treats the Vam file/G
bank combination as a logical unit.

copy hist.bnk dyme.bnk
copy hist.ind dyme.ind
copy hist.vam dyme.vam
fixer
macfixer
dyme
copy dyme.vam newsim.vam
copy dyme.bnk newsim.bnk
copy dyme.ind newsim.ind

Interdyme Overview 17 January 1996

A simple macro stub file for our hypothetical model is shown in Figure 9.

Figure 9. Macro Stub File for Simple Interdyme Model

The title of this table will be "Macro Summary". The table will contain GDP and its
components. Note that these are calculated within Compare through the use of the @csum()
function, which sums up the elements of a vector over a specified range.

Interdyme Version 2.0: New Features

Now that there is a true community of Interdyme users, model builders and programmers, the
development of Interdyme is entering a new stage. Inforum-USA will continue to develop the
capabilities of Interdyme with guidance and help from the group of international partners. As
the users of Interdyme have increased, features have been added and bugs corrected. A number
of these improvements and fixes have been gathered into what we are calling Version 2.0,
released in 1995. These improvements include:

Easier updating of the system to new versions in the future.

The ability to read multiple Vam files, for working with systems of models.

The ability to select features to meet each model's special requirements, using the minimum
amount of necessary code. This has required making the system more modular.

Better fix programs and functions.

A simpler example model, called Slimdyme.

Additional classes for aggregation, or for reading SLIMFORP (Fortran) Dirfor files, as are
currently used in most of the models in the Inforum linked system.

The ability to compile for DOS protected mode, or for OS/2, for models with large memory
requirements.

Each new version of Interdyme from now on will be found on the "Sartoris" server
(sartoris.umd.edu), in the subdirectory DYME. A small NOTES.DOC file will also be present
there, to tell the version number and date of the newest version. For those who want to see a

\announce Macro Summary
\ti Macro Summary
\gd 3
*
;
\decs 1
&
gdp ; Gross Domestic Product
@csum(pceio,1-33); Personal Consumption Expenditures
@csum(cstio,1-33); Structures Investment
@csum(pde,1-33) ; Equipment Investment
@csum(ven,1-33) ; Inventory Change
@csum(ex,1-33) ; Exports
@csum(im,1-33) ; Imports
@csum(def,1-33)+@csum(ndf,1-33); Federal Government
@csum(hlh,1-33)+@csum(edu,1-33)+@csum(oth,1-33); State & Local Government

Interdyme Overview 18 January 1996

longer history, the file VERSIONS.DOC summarizes the changes and fixes that were made in
each version.

Where Do We Go From Here?

Interdyme is a set of tools for building hybrid macroeconomic interindustry models. These
models generally possess a number of features, such as the ability to handle matrices and vectors
in Vam files, use macro variables, incorporate vector and macro fixes, calculate "detached
coefficient" equations for vectors. In Interdyme 2.0, changes were made to the system to make
these features more modular. Using a file called FEATURES.H, features can be turned on or off.
For example, you can now build an Interdyme model that uses matrices and vectors, but no
macrovariables, equations or fixes. Examples of such models include the Occupational
forecasting model developed by Qisheng Yu, some components of the Defense modeling system,
as well as some programs written to work with the linked trade data. On the other hand, one can
build a pure macro model such as the AMI model explained in The Craft of Economic Modeling.
Such a model uses no vectors, matrices or detached coefficient equations, but does use
macrovariables and macro fixes. In many ways, the Interdyme environment is superior to
G/Build for building macro models, since the code is easier to read, and the macro fixing
capabilities are more sophisticated. However, Interdyme currently can only handle annual data.
An improvement would be the addition of quarterly and monthly frequencies to the system.

Organizing Interdyme as a system with features that can be turned on or off encourages the
independent development of new features. For example, a ReSector class was recently
developed that handles aggregation of vectors and matrices. This class eases the aggregation of
occupational categories from 628 to some more reasonable number, or enables the quick
aggregation of LIFT data to something like 15 industries. Interdyme also now has a switch in
FEATURES.H that enables compiling for OS/2. OS/2 offers the benefit of smooth multitasking
and a large, flat, virtual address space. In addition, date and table-making features originally
developed with Compare can be used from an Interdyme model, to generate fancier output while
the model is running.

As more features are added to Interdyme, they will be described in periodic Interdyme Reports.
Interdyme Report #1 discusses the new features developed to implement import group fixes
within the Seidel function. This was a common feature of SLIMFORP, which had not yet been
incorporated into Interdyme. Interdyme Report #2 discusses the handling of discrepancies in the
input-output identities. The next report planned will discuss implementing input-output
coefficient change in an Interdyme model.

Interdyme Overview 19 January 1996

